Are you Tatsuyuki Ogawa?

Claim your profile

Publications (3)6.49 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Following the "adhesion-decalcification" concept, specific functional monomers possess the capacity to primary chemically interact with hydroxyapatite (HAp). Such ionic bonding with synthetic HAp has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), manifest as self-assembled "nanolayering". In continuation of that basic research this study aimed to explore whether nanolayering also occurs on enamel and dentin when a 10-MDP primer is applied following a common clinical application protocol. Therefore, the interaction of an experimental 10-MDP primer and a control, commercially available, 10-MDP-based primer (Clearfil SE Bond primer (C-SE), Kuraray) with enamel and dentin was characterized by X-ray diffraction (XRD), complemented with transmission electron microscopy interfacial ultrastructural data upon their reaction with enamel and dentin. In addition, XRD was used to study the effect of the concentration of 10-MDP on nanolayering on dentin. Finally, the stability of the nanolayers was determined by measuring the bond strength to enamel and dentin when a photoinitiator was added to the experimental primer or when interfacial polymerization depended solely on the photoinitiator supplied with the subsequently applied adhesive resin. XRD confirmed nanolayering on enamel and dentin, which was significantly greater on dentin than on enamel, and also when the surface was actively rubbed with the primer. Nanolayering was also proportional to the concentration of 10-MDP in the primer. Finally, the experimental primer needed the photoinitiator to obtain a tensile bond strength to dentin comparable with that of the control C-SE primer (which also contains a photoinitiator), but not when bonded to enamel. It is concluded that self-assembled nanolayering occurs on enamel and dentin, even when following a clinically used application protocol. The lower bonding effectiveness of mild self-etch adhesives to enamel should be ascribed in part to a lower chemical reactivity (nanolayering) with enamel HAp.
    Acta biomaterialia 04/2011; 7(8):3187-95. · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Each dental adhesive contains a specific functional monomer that determines its actual adhesive performance to tooth tissue. 4-methacryloxyethyl trimellitic acid (4-MET) is well-known as one of the functional monomers mostly available and consequently widely used in commercial adhesives. We therefore characterized the chemical interaction of 4-MET with hydroxyapatite (HAp) using X-ray Photoelectron Spectroscopy (XPS). XPS revealed that the peak representing -COO- of 4-MET shifted to a lower binding energy, when 4-MET was adsorbed onto HAp. Deconvolution of this shifted peak disclosed two components with a peak representing unreacted carboxyl groups and ester groups, and a peak suggesting chemical bonding of other carboxyl groups to Ca of HAp. XPS spectra of HAp treated with 4-MET also disclosed the surface to be enriched in calcium and decreased in phosphorus, indicating that phosphorus was extracted at a relatively higher rate than calcium. It can thus be concluded that true chemical bonding of 4-MET with calcium present in HAp occurred, as it was proven using XPS.
    Dental Materials Journal 01/2007; 25(4):645-9. · 0.81 Impact Factor
  • Dental Materials Journal - DENT MATER J. 01/2006; 25(4):645-649.