Are you Sandra L Johnson?

Claim your profile

Publications (1)1.35 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: To create, array, and characterize a pooled, high-coverage, genomic library composed of multiple biofilm-forming clinical strains of the opportunistic pathogen, Pseudomonas aeruginosa (PA). Twelve strains were obtained from patients with otorrhea, otitis media, and cystic fibrosis as a resource for investigating: difference in the transcriptomes of planktonic and biofilm envirovars; the size of the PA supragenome and determining the number of virulence genes available at the population level; and the distributed genome hypothesis. High molecular weight genomic DNAs from 12 clinical PA strains were individually hydrodynamically sheared to produce mean fragment sizes of approximately 1.5 kb. Equimolar amounts of the 12 sheared genomic DNAs were then pooled and used in the construction of a genomic library with approximately 250,000 clones that was arrayed and subjected to quality control analyses. Restriction endonuclease and sequence analyses of 686 clones picked at random from the library demonstrated that >75% of the clones contained inserts larger than 0.5 kb with the desired mean insert size of 1.4 kb. Thus, this library provides better than 4.5x coverage for each of the genomes from the 12 components clinical PA isolates. Our sequencing effort ( approximately 1 million nucleotides to date) reveals that 13% of the clones present in this library are not represented in the genome of the reference P. aeruginosa strain PA01. Our data suggests that reliance on a single laboratory strain, such as PA01, as being representative of a pathogenic bacterial species will fail to identify many important genes, and that to obtain a complete picture of complex phenomena, including bacterial pathogenesis and the genetics of biofilm development will require characterization of the P. aeruginosa population-based supra-genome.
    International Journal of Pediatric Otorhinolaryngology 11/2006; 70(11):1891-900. · 1.35 Impact Factor