Kiek Verrijp

Radboud University Medical Centre (Radboudumc), Nymegen, Gelderland, Netherlands

Are you Kiek Verrijp?

Claim your profile

Publications (27)139.23 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gliomas are primary brain tumors for which surgical resection and radiotherapy is difficult because of the diffuse infiltrative growth of the tumor into the brain parenchyma. For development of alternative, drug-based, therapies more insight in the molecular processes that steer this typical growth and morphodynamic behavior of glioma cells is needed. Protein tyrosine phosphatase PTPRZ-B is a transmembrane signaling molecule that is found to be strongly up-regulated in glioma specimens. We assessed the contribution of PTPRZ-B protein domains to tumor cell growth and migration, via lentiviral knock-down and over-expression using clinically relevant glioma xenografts and their derived cell models. PTPRZ-B knock-down resulted in reduced migration and proliferation of glioma cells in vitro and also inhibited tumor growth in vivo. Interestingly, expression of only the PTPRZ-B extracellular segment was sufficient to rescue the in vitro migratory phenotype that resulted from PTPRZ-B knock-down. In contrast, PTPRZ-B knock-down effects on proliferation could be reverted only after re-expression of PTPRZ-B variants that contained its C-terminal PDZ binding domain. Thus, distinct domains of PTPRZ-B are differentially required for migration and proliferation of glioma cells, respectively. PTPRZ-B signaling pathways therefore represent attractive therapeutic entry points to combat these tumors.
    Oncotarget 08/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse gliomas comprise a group of primary brain tumors that originate from glial (precursor) cells and present as a variety of malignancy grades which have in common that they grow by diffuse infiltration. This phenotype complicates treatment enormously as it precludes curative surgery and radiotherapy. Furthermore, diffusely infiltrating glioma cells often hide behind a functional blood-brain barrier, hampering delivery of systemically administered therapeutic and diagnostic compounds to the tumor cells. The present review addresses the biological mechanisms that underlie the diffuse infiltrative phenotype, knowledge of which may improve treatment strategies for this disastrous tumor type. The invasive phenotype is specific for glioma: most other brain tumor types, both primary and metastatic, grow as delineated lesions. Differences between the genetic make-up of glioma and that of other tumor types may therefore help to unravel molecular pathways, involved in diffuse infiltrative growth. One such difference concerns mutations in the NADP(+)-dependent isocitrate dehydrogenase (IDH1 and IDH2) genes, which occur in >80% of cases of low grade glioma and secondary glioblastoma . In this review we present a novel hypothesis which links IDH1 and IDH2 mutations to glutamate metabolism, possibly explaining the specific biological behavior of diffuse glioma.
    Biochimica et Biophysica Acta 04/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffuse gliomas comprise a group of primary brain tumors that originate from glial (precursor) cells and present as a variety of malignancy grades which have in common that they grow by diffuse infiltration. This phenotype complicates treatment enormously as it precludes curative surgery and radiotherapy. Furthermore, diffusely infiltrating glioma cells often hide behind a functional blood–brain barrier, hampering delivery of systemically administered therapeutic and diagnostic compounds to the tumor cells. The present review addresses the biological mechanisms that underlie the diffuse infiltrative phenotype, knowledge of which may improve treatment strategies for this disastrous tumor type. The invasive phenotype is specific for glioma: most other brain tumor types, both primary and metastatic, grow as delineated lesions. Differences between the genetic make-up of glioma and that of other tumor types may therefore help to unravel molecular pathways, involved in diffuse infiltrative growth. One such difference concerns mutations in the NADP+-dependent isocitrate dehydrogenase (IDH1 and IDH2) genes, which occur in > 80% of cases of low grade glioma and secondary glioblastoma . In this review we present a novel hypothesis which links IDH1 and IDH2 mutations to glutamate metabolism, possibly explaining the specific biological behavior of diffuse glioma.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 01/2014; · 7.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeted carrier systems (e.g., liposomes or nanoparticles) are used to specifically deliver drugs to a site of interest. Site-direction can be achieved by attachment of targeting molecules, such as peptides, DNA/RNA, or antibodies, to the surface of the carrier. Here, the formation of polymersomes with tumor-targeting potential is described. A single-domain antibody (A12) that specifically targets PlexinD1 (a transmembrane protein overexpressed in tumor vasculature) is equipped with an azide-functionality using expressed protein ligation. This azide-containing A12 can subsequently be attached to BCN-functionalized polymersomes using a strain-promoted azide alkyne cycloaddition, thereby forming polymersomes with tumor-targeting potential.
    Macromolecular Bioscience 05/2013; · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In in vitro cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited in vitro. Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from in vitro experiments, in vivo blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity.
    PLoS ONE 01/2013; 8(3):e58262. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. Results LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of α-ketoglutarate (α-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. α-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain α-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. Conclusions The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations.
    Acta Neuropathologica Communications. 01/2013; 1(1).
  • Muscle & Nerve 03/2012; 45(3):449-50. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM) are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years) with a predominant presentation of dilated cardiomyopathy (DCM). Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG). Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations.
    PLoS Genetics 12/2011; 7(12):e1002427. · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tenascin-X (TNX) is an extracellular matrix (ECM) glycoprotein, the absence of which in humans leads to a recessive form of Ehlers-Danlos syndrome (EDS), a group of inherited connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. A mouse model of TNX-deficient type EDS has been used to characterize the dermatological, orthopedic, and obstetrical features. The growing insight in the clinical overlap between myopathies and inherited connective tissue disorders asks for a study of the muscular characteristics of inherited connective tissue diseases. Therefore, this study aims to define the muscular phenotype of TNX knockout (KO) mice. We performed a comprehensive study on the muscular phenotype of these TNX KO mice, consisting of standardized clinical assessment, muscle histology, and gene expression profiling of muscle tissue. Furthermore, peripheral nerve composition was studied by histology and electron microscopy. The main findings are the presence of mild muscle weakness, mild myopathic features on histology, and functional upregulation of genes encoding proteins involved in ECM degradation and synthesis. Additionally, sciatic nerve samples showed mildly reduced collagen fibril density of endoneurium. The muscular phenotype of TNX KO mice consists of mild muscle weakness with histological signs of myopathy and of increased turnover of the ECM in muscle. Furthermore, mildly reduced diameter of myelinated fibers and reduction of collagen fibril density of endoneurium may correspond with polyneuropathy in TNX-deficient EDS patients. This comprehensive assessment can serve as a starting point for further investigations on neuromuscular function in TNX KO mice.
    Connective tissue research 03/2011; 52(5):422-32. · 1.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In aromatic L-amino acid decarboxylase (AADC) deficiency, a neurotransmitter biosynthesis defect, paradoxical normal or increased levels of urinary dopamine have been reported. Genotype/phenotype correlations or alternative metabolic pathways may explain this remarkable finding, but were never studied systematically. We studied the mutational spectrum and urinary dopamine levels in 20 patients with AADC-deficiency. Experimental procedures were designed to test for alternative metabolic pathways of dopamine production, which included alternative substrates (tyramine and 3-methoxytyrosine) and alternative enzymes (tyrosinase and CYP2D6). In 85% of the patients the finding of normal or increased urinary levels of dopamine was confirmed, but a relation with AADC genotype could not be identified. Renal microsomes containing CYP2D were able to convert tyramine into dopamine (3.0 nmol/min/g protein) but because of low plasma levels of tyramine this is an unlikely explanation for urinary dopamine excretion in AADC-deficiency. No evidence was found for the production of dopamine from 3-methoxytyrosine. Tyrosinase was not expressed in human kidney. Normal or increased levels of urinary dopamine are found in the majority of AADC-deficient patients. This finding can neither be explained by genotype/phenotype correlations nor by alternative metabolic pathways, although small amounts of dopamine may be formed via tyramine hydroxylation by renal CYP2D6. CYP2D6-mediated conversion of tyramine into dopamine might be an interesting target for the development of new therapeutic strategies in AADC-deficiency.
    Molecular Genetics and Metabolism 12/2010; 101(4):349-56. · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor vasculature is in general highly heterogeneous. This characteristic is most prominent in high-grade gliomas, which present with areas of angiogenic growth, next to large areas of diffuse infiltrative growth in which tumor cells thrive on pre-existent brain vasculature. This limits the effectiveness of anti-angiogenic compounds as these will not affect more matured and co-opted vessels. Therefore, additional destruction of existing tumor vasculature may be a promising alternative avenue to effectively deprive tumors from blood. This approach requires the identification of novel tumor vascular targeting agents, which have broad tumor vessel specificities, ie are not restricted to newly formed vessels. Here, we describe the generation of a phage library displaying nanobodies that were cloned from lymphocytes of a Llama which had been immunized with clinical glioma tissue. In vivo biopanning with this library in the orthotopic glioma xenograft models E98 and E434 resulted in the selection of various nanobodies which specifically recognized glioma vessels in corresponding glioma xenografts. Importantly, also nanobodies were isolated which discriminated incorporated pre-existent vessels in highly infiltrative cerebral E434 xenografts from normal brain vessels. Our results suggest that the generation of nanobody-displaying immune phage libraries and subsequent in vivo biopanning in appropriate animal models is a promising approach for the identification of novel vascular targeting agents.
    Laboratory Investigation 10/2009; 90(1):61-7. · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plexin D1 is expressed on both tumor-associated endothelium and malignant cells in a number of clinical brain tumors. Recently we demonstrated that Plexin D1 expression is correlated with tumor invasion level and metastasis in a human melanoma progression series. The objective of this study was to examine whether Plexin D1 might be clinically useful as a pan-tumor vessel and pan-tumor cell target in solid tumors. We examined Plexin D1 expression in clinical solid tumors (n = 77) of different origin, a selection of pre-malignant lesions (n = 29) and a variety of non-tumor related tissues (n = 52) by immunohistochemistry. Signals were verified in a selection of tissues via mRNA in situ hybridization. Plexin D1 is abundantly expressed on both activated established tumor vasculature and malignant cells in the majority of primary and metastatic clinical tumors, as well as on macrophages and fibroblasts. Importantly, in non-tumor related tissues Plexin D1 expression is restricted to a subset of, presumably activated, fibroblasts and macrophages. We demonstrate that Plexin D1 is in general ubiquitously expressed in tumor but not normal vasculature, as well as in malignant cells in a wide range of human tissues. This expression profile highlights Plexin D1 as a potentially valuable therapeutic target in clinical solid tumors, enabling simultaneous targeting of different tumor compartments.
    BMC Cancer 09/2009; 9:297. · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investigation of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.
    The American Journal of Human Genetics 08/2009; 85(1):76-86. · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumour metastasis is the result of a complex sequence of events, including migration of tumour cells through stroma, proteolytic degradation of stromal and vessel wall elements, intravasation, transport through the circulation, extravasation and outgrowth at compatible sites in the body (the 'seed and soil' hypothesis). However, the high incidence of metastasis from various tumour types in liver and lung may be explained by a stochastic process as well, based on the anatomical relationship of the primary tumour with the circulation and mechanical entrapment of metastatic tumour cells in capillary beds. We previously reported that constitutive VEGF-A expression in tumour xenografts facilitates this type of metastatic seeding by promoting shedding of multicellular tumour tissue fragments, surrounded by vessel wall elements, into the circulation. After transport through the vena cava, such fragments may be trapped in pulmonary arteries, allowing them to expand to symptomatic lesions. Here we tested whether this process has clinical relevance for clear cell renal cell carcinoma (ccRCC), a prototype tumour in the sense of high constitutive VEGF-A expression. To this end we collected and analysed outflow samples from the renal vein, directly after tumour nephrectomy, in 42 patients diagnosed with ccRCC. Tumour fragments in venous outflow were observed in 33% of ccRCC patients and correlated with the synchronous presence or metachronous development of pulmonary metastases (p < 0.001, Fisher's exact test). In patients with tumours that, in retrospect, were not of the VEGF-A-expressing clear cell type, tumour fragments were never observed in the renal outflow. These data suggest that, in ccRCC, a VEGF-A-induced phenotype promotes a release of tumour cell clusters into the circulation that may contribute to pulmonary metastasis.
    The Journal of Pathology 08/2009; 219(3):287-93. · 7.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor-A (VEGF-A) is one of the most important factors inducing angiogenesis in tumors. Nine splice-variant isoforms of VEGF-A have been identified, each having different properties. Recently, we showed that radiolabeled anti-VEGF monoclonal antibody, bevacizumab, accumulates specifically in VEGF-A expressing tumors. In this study, we investigated in a nude mouse model which VEGF-isoforms are responsible for tumor accretion. The humanized anti-VEGF-A antibody, A.4.6.1. (bevacizumab), was radiolabeled with In-111. The originally VEGF-negative Mel57 tumor was transfected with different VEGF isoforms (VEGF-121, VEGF-165, and VEGF-189). The obtained melanoma xenografts specifically expressing different VEGF-isoforms were used in mice. The bevacizumab uptake was examined in biodistribution studies and by gamma-camera imaging. The tumor cell line expressing VEGF-121 did not show specific uptake, most likely as a result of the fact that this isoform is freely diffusible. Tumors expressing VEGF-165 and -189 were clearly visualized by using gamma-camera imaging. The accumulation of radiolabeled bevacizumab in the tumor is due to interaction with VEGF-A isoforms that are associated with the tumor cell surface and/or the extracellular matrix. Scintigraphic imaging of the expression of these VEGF isoforms may thus be useful to predict response to angiogenic therapy.
    Cancer Biotherapy & Radiopharmaceuticals 05/2009; 24(2):195-200. · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plexin D1 (PLXND1) is broadly expressed on tumor vessels and tumor cells in a number of different human tumor types. Little is known, however, about the potential functional contribution of PLXND1 expression to tumor development. Expression of semaphorin 3E (Sema3E), one of the ligands for PLXND1, has previously been correlated with invasive behavior and metastasis, suggesting that the PLXND1-Sema3E interaction may play a role in tumor progression. Here we investigated PLXND1 and Sema3E expression during tumor progression in cases of melanoma. PLXND1 was not expressed by melanocytic cells in either naevi or melanomas in situ, whereas expression increased with invasion level, according to Clark's criteria. Furthermore, 89% of the metastatic melanomas examined showed membranous PLXND1-staining of tumor cells. Surprisingly, expression of Sema3E was inversely correlated with tumor progression, with no detectable staining in melanoma metastasis. To functionally assess the effects of Sema3E expression on tumor development, we overexpressed Sema3E in a xenograft model of metastatic melanoma. Sema3E expression dramatically decreased metastatic potential. These results show that PLXND1 expression during tumor development is strongly correlated with both invasive behavior and metastasis, but exclude Sema3E as an activating ligand.
    American Journal Of Pathology 01/2009; 173(6):1873-81. · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we examined the correlation between muscle ultrasound and muscle structure. Echo intensity (EI) of 14 muscles of two golden retriever muscular dystrophy dogs was correlated to the percentage interstitial fibrous tissue and fat in muscle biopsy. A significant correlation between interstitial fibrous tissue and EI was found (r = 0.87; p < 0.001). The separate influence of interstitial fat on muscle EI could not be established as only little fat was present. We conclude that fibrous tissue causes increased muscle EI. The high correlation between interstitial fibrous tissue and EI makes ultrasound a reliable method to determine severity of structural muscle changes.
    Ultrasound in medicine & biology 12/2008; 35(3):443-6. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the correlation between tumour accumulation of In-111-bevacizumab and VEGF-A expression in patients with colorectal liver metastases. Two weeks before resection of the liver metastases 12 patients were intravenously injected with In-111-labelled bevacizumab. Ten minutes and 7 d after injection a whole body scan was acquired. Seven days after the injection, 3D acquisition SPECT of the liver was performed. Enhanced uptake of In-111-bevacizumab in the liver metastases was observed in 9 of the 12 patients. The level of antibody accumulation in these lesions varied considerably. There was no correlation between the level of In-111-antibody accumulation and the level of VEGF-A expression in the tissue as determined by in situ hybridisation and ELISA. In this study, we investigated the correlation between tumour accumulation of radiolabelled bevacizumab and VEGF-A expression in patients with colorectal liver metastases. No clear-cut correlation between the level of antibody accumulation and expression of VEGF-A was found.
    European journal of cancer (Oxford, England: 1990) 09/2008; 44(13):1835-40. · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor-A (VEGF-A) is one of the most important angiogenic factors. Here, we studied in a nude mouse model whether the expression of VEGF-A in a tumor could be imaged with a radiolabeled anti-VEGF antibody. The humanized anti-VEGF-A antibody A.4.6.1. (bevacizumab), which is reactive with all VEGF-A isoforms, was radiolabeled with In-111 or with I-125. The accumulation of the radiolabeled antibodies in VEGF-A expressing tumors (LS174T) in nude mice was examined in biodistribution studies and by gamma camera imaging. The uptake of the In-111-bevacizumab in the tumor at 3 days p.i. was significantly higher than that of I-125-bevacizumab (19.4 +/- 7.0 %ID/g vs. 9.6 +/- 3.3 %ID/g, p = 0.04). Coinjection of an excess unlabeled antibody resulted in a significant decrease in radioactivity concentration in the tumor (<2.9 +/- 1.9 %ID/g, p < 0.005), indicating VEGF-mediated antibody uptake. Highest uptake in the tumor was observed at relatively low antibody protein doses (<3 microg) (20-25 %ID/g). VEGF-A-expressing tumors could be clearly visualized on planar scintigraphic images from 24-hr post injection onwards. In conclusion, VEGF-A expression in tumors can be visualized specifically with radiolabeled anti-VEGF-A-mAb.
    International Journal of Cancer 06/2008; 122(10):2310-4. · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was to evaluate whether a collagen biomatrix is useful for delayed intrauterine coverage of a surgically created spina bifida in a fetal lamb. In 20 fetal lambs, surgery was performed at 72 or 79 days' gestation. In 15 lambs a spina bifida was created surgically. In 8 lambs it was covered with a collagen biomatrix 2 weeks later and in 7 lambs it was left uncovered. Five lambs served as sham operated controls. Neurological examination was performed at 1 week of age and afterwards the lambs were sacrificed for further histological evaluation. None of the 5 surviving lambs with the defect covered showed loss of spinal function and the architecture of the spinal cord was preserved in 4 of the 5 lambs. In the uncovered group, 1 of the 4 surviving lambs had loss of spinal function, 5 lambs were available for histological evaluation and 4 of them showed disturbance of the architecture of the spinal cord. Collagen biomatrices can be used for intrauterine coverage of an experimental spina bifida and can preserve the architecture of the spinal cord. Neurological outcome is not different between fetuses with their spinal cord covered and fetuses with uncovered cords.
    Pediatric Neurosurgery 02/2008; 44(1):29-35. · 0.50 Impact Factor

Publication Stats

659 Citations
139.23 Total Impact Points

Institutions

  • 2006–2014
    • Radboud University Medical Centre (Radboudumc)
      • Department of Human Genetics
      Nymegen, Gelderland, Netherlands
  • 2013
    • University of Amsterdam
      • Department of Cell Biology
      Amsterdamo, North Holland, Netherlands
  • 2003–2009
    • Radboud University Nijmegen
      • • Department of Biomolecular Chemistry
      • • Department of Pathology
      Nijmegen, Provincie Gelderland, Netherlands