Are you Barbara B Szomju?

Claim your profile

Publications (4)12.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies have shown that the TOM1 family of proteins, including TOM1 and TOM1L1, are actively involved in endosomal trafficking and function in the immune response. However, much less is known about the function of TOM1L2. To understand the biological importance of TOM1L2 and the potential significance of its cellular role, we created and evaluated Tom1l2 gene-trapped mice with reduced Tom1l2 expression. Mice hypomorphic for Tom1l2 exhibited numerous infections and tumors compared to wild-type littermates. Associated with this increased risk for infection and tumor formation, apparently healthy Tom1l2 hypomorphs also had splenomegaly, elevated B- and T-cell counts, and an impaired humoral response, although at a reduced penetrance. Furthermore, cellular localization studies showed that a Tom1l2-GFP fusion protein colocalizes with Golgi compartments, supporting the role of Tom1l2 in cellular trafficking, while molecular modeling and bioinformatic analysis of Tom1l2 illustrated a structural basis for a functional role in trafficking. These results indicate a role for Tom1l2 in the immune response and possibly in tumor suppression.
    Mammalian Genome 05/2008; 19(4):246-62. · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Duplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay. We are conducting a genetic study of autism and are screening all cases for submicroscopic chromosomal abnormalities, in addition to standard karyotyping, and fragile X testing. Using array-based comparative genomic hybridization analysis of data from the Affymetrix GeneChip(R) Human Mapping Array set, we detected a duplication of approximately 3.3 Mb on chromosome 17p11.2 in a male child with autism and severe expressive language delay. The duplication was confirmed by measuring the copy number of genomic DNA using quantitative polymerase chain reaction. Gene expression analyses revealed increased expression of three candidate genes for the Smith-Magenis neurobehavioral phenotype, RAI1, DRG2, and RASD1, in transformed lymphocytes from Case 81A, suggesting gene dosage effects. Our results add to a growing body of evidence suggesting that duplications of 17(p11.2p11.2) result in language delay as well as autism and related phenotypes. As Smith-Magenis syndrome is also associated with language delay, a gene involved in acquisition of language may lie within this interval. Whether a parent of origin effect, gender of the case, the presence of allelic variation, or changes in expression of genes outside the breakpoints influence the resultant phenotype remains to be determined.
    American Journal of Medical Genetics Part A 04/2008; 146A(5):636-43. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation disorder characterized by distinct craniofacial features and neurobehavioral abnormalities usually associated with an interstitial deletion in 17p11.2. Heterozygous point mutations in the retinoic acid induced 1 gene (RAI1) have been reported in nine SMS patients without a deletion detectable by fluorescent in situ hybridization (FISH), implicating RAI1 haploinsufficiency as the cause of the major clinical features in SMS. All of the reported point mutations are unique and de novo. RAI1 contains a polymorphic CAG repeat and encodes a plant homeo domain (PHD) zinc finger-containing transcriptional regulator. We report a novel RAI1 frameshift mutation, c.3103delC, in a non-deletion patient with many SMS features. The deletion of a single cytosine occurs in a heptameric C-tract (CCCCCCC), the longest mononucleotide repeat in the RAI1 coding region. Interestingly, we had previously reported a frameshift mutation, c.3103insC, in the same mononucleotide repeat. Furthermore, all five single base frameshift mutations preferentially occurred in polyC but not polyG tracts. We also investigated the distribution of the polymorphic CAG repeats in both the normal population and the SMS patients as one potential molecular mechanism for variability of clinical expression. In this limited data set, there was no significant association between the length of CAG repeats and the SMS phenotype. However, we identified a 5-year-old girl with an apparent SMS phenotype who was a compound heterozygote for an RAI1 missense mutation inherited from her father and a polyglutamine repeat of 18 copies, representing the largest known CAG repeat in this gene, inherited from her mother.
    American Journal of Medical Genetics Part A 12/2006; 140(22):2454-63. · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Smith-Magenis syndrome (SMS) is a complex disorder that includes mental retardation, craniofacial and skeletal anomalies, and behavioral abnormalities. We report the molecular and genotype-phenotype analyses of 31 patients with SMS who carry 17p11.2 deletions or mutations in the RAI1 gene. Patients with SMS were evaluated by fluorescence in situ hybridization and/or sequencing of RAI1 to identify 17p11.2 deletions or intragenic mutations, respectively, and were compared for 30 characteristic features of this disorder by the Fisher exact test. In our cohort, 8 of 31 individuals carried a common 3.5 Mb deletion, whereas 10 of 31 individuals carried smaller deletions, two individuals carried larger deletions, and one individual carried an atypical 17p11.2 deletion. Ten patients with nondeletion harbored a heterozygous mutation in RAI1. Phenotypic comparison between patients with deletions and patients with RAI1 mutations show that 21 of 30 SMS features are the result of haploinsufficiency of RAI1, whereas cardiac anomalies, speech and motor delay, hypotonia, short stature, and hearing loss are associated with 17p11.2 deletions rather than RAI1 mutations (P<.05). Further, patients with smaller deletions show features similar to those with RAI1 mutations. Although RAI1 is the primary gene responsible for most features of SMS, other genes within 17p11.2 contribute to the variable features and overall severity of the syndrome.
    Genetics in Medicine 07/2006; 8(7):417-27. · 5.56 Impact Factor