F. Calura

The Astronomical Observatory of Brera, Merate, Lombardy, Italy

Are you F. Calura?

Claim your profile

Publications (96)279.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We trace the formation and advection of several elements within a cosmological adaptive mesh refinement simulation of an L* galaxy. We use nine realisations of the same initial conditions with different stellar Initial Mass Functions (IMFs), mass limits for type-II and type-Ia supernovae (SNII, SNIa) and stellar lifetimes to constrain these sub-grid phenomena. Our code includes self-gravity, hydrodynamics, star formation, radiative cooling and feedback from multiple sources within a cosmological framework. Under our assumptions of nucleosynthesis we find that SNII with progenitor masses of up to 100 Msun are required to match low metallicity gas oxygen abundances. Tardy SNIa are necessary to reproduce the classical chemical evolution knee in [O/Fe]-[Fe/H]: more prompt SNIa delayed time distributions do not reproduce this feature. Within our framework of hydrodynamical mixing of metals and galaxy mergers we find that chemical evolution is sensitive to the shape of the IMF and that there exists a degeneracy with the mass range of SNII. We look at the abundance plane and present the properties of different regions of the plot, noting the distinct chemical properties of satellites and a series of nested discs that have greater velocity dispersions, are more alpha-rich and metal poor with age.
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nature of some GRB host galaxies has been investigated by means of chemical evolution models of galaxies of different morphological type following the evolution of the abundances of H, He, C, N, O, $\alpha$-elements, Ni, Fe, Zn, and including also the evolution of dust. By comparing predictions with abundance data, we were able to constrain nature and age of GRB hosts. We also computed a theoretical cosmic dust rate, including stellar dust production, accretion and destruction, under the hypotheses of pure luminosity evolution and strong number density evolution of galaxies. We suggest that one of the three GRB hosts is a massive proto-spheroid catched during its formation, while for the other two the situation is more uncertain, although one could perhaps be a spheroid and the other a spiral galaxy. We estimated the chemical ages of the host galaxies which vary from 15 to 320 Myr. Concerning the cosmic effective dust production rate in an unitary volume of the Universe, our results show that in the case of pure luminosity evolution there is a first peak between redshift $z=8$ and $9$ and another at $z\sim 5$, whereas in the case of strong number density evolution it increases slightly from $z=10$ to $z\sim 2$ and then it decreases down to $z=0$. Finally, we found tha the total cosmic dust mass density at the present time is: $\Omega_{dust} \sim 3.5\cdot 10^{-5}$in the case of pure luminosity evolution and $\Omega_{dust} \sim 7\cdot 10^{-5}$ in the case of number density evolution.
    Monthly Notices of the Royal Astronomical Society 07/2014; 444(2). · 5.52 Impact Factor
  • Source
    Francesco Calura, Nicola Menci, Anna Gallazzi
    [Show abstract] [Hide abstract]
    ABSTRACT: By means of a semi-analytic model of galaxy formation, we show how the local observed relation between age and galactic stellar mass is affected by assuming a DM power spectrum with a small-scale cutoff. We compare results obtained by means of both a Lambda-cold dark matter (LambdaCDM) and a Lambda-warm dark matter (LambdaWDM) power spectrum - suppressed with respect to the LambdaCDM at scales below ~ 1 Mpc. We show that, within a LWDM cosmology with a thermal relic particle mass of 0.75 keV, both the mass-weighted and the luminosity-weighted age-mass relations are steeper than those obtained within a LambdaCDM universe, in better agreement with the observed relations. Moreover, both the observed differential and cumulative age distributions are better reproduced within a LambdaWDM cosmology. In such a scenario, star formation appears globally delayed with respect to the LambdaCDM, in particular in low-mass galaxies. The difficulty of obtaining a full agreement between model results and observations is to be ascribed to our present poor understanding of baryonic physics.
    02/2014; 440(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of the environment of the Swift long gamma-ray burst GRB 120327A at z ~2.8 through optical spectroscopy of its afterglow. We analyzed medium-resolution, multi-epoch spectroscopic observations (~7000 - 12000, corresponding to ~ 15 - 23 km/s, S/N = 15- 30 and wavelength range 3000-25000AA) of the optical afterglow of GRB 120327A, taken with X-shooter at the VLT 2.13 and 27.65 hr after the GRB trigger. The first epoch spectrum shows that the ISM in the GRB host galaxy at z = 2.8145 is extremely rich in absorption features, with three components contributing to the line profiles. The hydrogen column density associated with GRB 120327A has log NH / cm^(-2) = 22.01 +/- 0.09, and the metallicity of the host galaxy is in the range [X/H] = -1.3 to -1.1. In addition to the ground state lines, we detect absorption features associated with excited states of CII, OI, SiII, FeII, and NiII, which we used to derive information on the distance between the host absorbing gas and the site of the GRB explosion. The variability of the FeI\lambda2396 excited line between the two epochs proves that these features are excited by the GRB UV flux. Moreover, the distance of component I is found to be dI=200+100-60 pc, while component II is located closer to the GRB, at dII=100+40-30 pc. These values are among the lowest found in GRBs. Component III does not show excited transitions, so it should be located farther away from the GRB. The presence of H2 molecules is firmly established, with a molecular fraction in the range f=4 X 10^(-7) - 10^(-4). This particularly low value can be attributed to the small dust content. This represents the third positive detection of molecules in a GRB environment.
    Astronomy and Astrophysics 02/2014; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this paper is to quantify the amplitude of the predicted plateau in [α/Fe] ratios associated with the most metal-poor stars of a galaxy. We assume that the initial mass function (IMF) in galaxies is steeper if the star formation rate (SFR) is low - as per the integrated galactic initial mass function (IGIMF) theory. A variant of the theory, in which the IGIMF depends upon the metallicity of the parent galaxy, is also considered. The IGIMF theory predicts low [α/Fe] plateaus in dwarf galaxies, characterized by small SFRs. The [α/Fe] plateau is up to 0.7 dex lower than the corresponding plateau of the Milky Way. For a universal IMF one should expect instead that the [α/Fe] plateau is the same for all the galaxies, irrespective of their masses or SFRs. Assuming a strong dependence of the IMF on the metallicity of the parent galaxy, dwarf galaxies can show values of the [α/Fe] plateau similar to those of the Milky Way, and almost independent of the SFR. The [Mg/Fe] ratios of the most metal-poor stars in dwarf galaxies satellites of the Milky Way can be reproduced either if we consider metallicity-dependent IMFs or if the early SFRs of these galaxies were larger than we presently think. Present and future observations of dwarf galaxies can help disentangle between these different IGIMF formulations.
    Monthly Notices of the Royal Astronomical Society 01/2014; 437(1):994-1008. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by standard model assumptions. We provide predictions regarding the abundance of the descendants of QSO hosts; albeit rare, such systems should be present and detectable by future deep surveys such as Euclid already at z>4.
    Monthly Notices of the Royal Astronomical Society 12/2013; 438(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report ALMA Cycle 0 observations at 1.3mm of LESS J033229.4-275619 (XID403), an Ultraluminous Infrared Galaxy at $z=4.75$ in the Chandra Deep Field South hosting a Compton-thick QSO. The source is not resolved in our data at a resolution of $\sim$0.75 arcsec, placing an upper-limit of 2.5 kpc to the half-light radius of the continuum emission from heated-dust. After deconvolving for the beam size, however, we found a $\sim3\sigma$ indication of an intrinsic source size of $0.27\pm0.08$ arcsec (Gaussian FWHM), which would correspond to $r_{half}\sim0.9\pm0.3$ kpc. We build the far-IR SED of XID403 by combining datapoints from both ALMA and Herschel and fit it with a modified blackbody spectrum. For the first time, we measure the dust temperature $T_d=58.5\pm5.3$ K in this system, which is comparable to what has been observed in other high-z submillimeter galaxies. The measured star formation rate is SFR=$1020\pm150$ $M_{\odot}$ yr$^{-1}$, in agreement with previous estimates at lower S/N. Based on the measured SFR and source size, we constrain the SFR surface density to be $\Sigma_{SFR}>26\;M_{\odot}$yr$^{-1}$kpc$^{-2}$ ($\sim200\;M_{\odot}$yr$^{-1}$kpc$^{-2}$ for $r_{half}\sim0.9$ kpc). The compactness of this starburst is comparable to what has been observed in other local and high-z starburst galaxies. If the gas mass measured from previous [CII] and CO(2-1) observations at low resolution is confined within the same dust region, assuming $r_{half}\sim0.9\pm0.3$ kpc, this would produce a column density of $N_H\sim0.3-1.1\times10^{24}$cm$^{-2}$ towards the central SMBH, similar to the column density of $\approx1.4\times10^{24}$cm$^{-2}$ measured from the X-rays. Then, in principle, if both gas and dust were confined on sub-kpc scales, this would be sufficient to produce the observed X-ray column density without any need of a pc-scale absorber [abridged].
    Astronomy and Astrophysics 12/2013; 562. · 5.08 Impact Factor
  • Source
    F. Calura, L. Ciotti, C. Nipoti
    [Show abstract] [Hide abstract]
    ABSTRACT: The mass returned to the ambient medium by aging stellar populations over cosmological times sums up to a significant fraction (20% - 30% or more) of their initial mass. This continuous mass injection plays a fundamental role in phenomena such as galaxy formation and evolution, fueling of supermassive black holes in galaxies and the consequent (negative and positive) feedback phenomena, and the origin of multiple stellar populations in globular clusters. In numerical simulations the calculation of the mass return can be time consuming, since it requires at each time step the evaluation of a convolution integral over the whole star formation history, so the computational time increases quadratically with the number of time-steps. The situation can be especially critical in hydrodynamical simulations, where different grid points are characterized by different star formation histories, and the gas cooling and heating times are shorter by orders of magnitude than the characteristic stellar lifetimes. In this paper we present a fast and accurate method to compute the mass return from stellar populations undergoing arbitrarily complicated star formation histories. At each time-step the mass return is calculated from its value at the previous time, and the star formation rate over the last time-step only. Therefore in the new scheme there is no need to store the whole star formation history, and the computational time increases linearly with the number of time-steps.
    12/2013; 440(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this paper is to quantify the amplitude of the predicted plateau in [alpha/Fe] ratios associated with the most metal-poor stars of a galaxy. We assume that the initial mass function in galaxies is steeper if the star formation rate (SFR) is low -- as per the integrated galactic initial mass function (IGIMF) theory. A variant of the theory, in which the IGIMF depends upon the metallicity of the parent galaxy, is also considered. The IGIMF theory predicts low [alpha/Fe] plateaus in dwarf galaxies, characterised by small SFRs. The [alpha/Fe] plateau is up to 0.7dex lower than the corresponding plateau of the Milky Way. For a universal IMF one should expect instead that the [alpha/Fe] plateau is the same for all the galaxies, irrespective of their masses or SFRs. Assuming a strong dependence of the IMF on the metallicity of the parent galaxy, dwarf galaxies can show values of the [alpha/Fe] plateau similar to those of the Milky Way, and almost independent on the SFR. The [Mg/Fe] ratios of the most metal-poor stars in dwarf galaxies satellites of the Milky Way can be reproduced either if we consider metallicity-dependent IMFs or if the early SFRs of these galaxies were larger than we presently think. Present and future observations of dwarf galaxies can help disentangle between these different IGIMF formulations.
    10/2013;
  • A. Pipino, F. Calura, F. Matteucci
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper aims at explaining the two phases in the observed specific star formation rate (sSFR), namely the high (>3/Gyr) values at z > 2 and the smooth decrease since z = 2. In order to do this, we compare to observations the sSFR evolution predicted by well-calibrated models of chemical evolution for elliptical and spiral galaxies, using the additional constraints on the mean stellar ages of these galaxies (at a given mass). We can conclude that the two phases of the sSFR evolution across cosmic time are due to different populations of galaxies. At z > 2, the contribution comes from spheroids: the progenitors of present-day massive ellipticals (which feature the highest sSFR) as well as haloes and bulges in spirals (which contribute with average and lower-than-average sSFR). In each single galaxy, the sSFR decreases rapidly and the star formation stops in <1 Gyr. However, the combination of different generations of ellipticals in formation might result in an apparent lack of strong evolution of the sSFR (averaged over a population) at high redshift. The z < 2 decrease is due to the slow evolution of the gas fraction in discs, modulated by the gas accretion history and regulated by the Schmidt law. The Milky Way makes no exception to this behaviour.
    Monthly Notices of the Royal Astronomical Society 07/2013; 432(3):2541-2548. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The CIV doublet has proven to be an important tracer of the IGM and its evolution from z = 6 to 0. We vastly improved the 1.5 < z < 4.5 CIV statistics by surveying the thousands of SDSS DR7 quasar spectra, resulting in a catalog with more than 15,000 systems (Cooksey et al. 2012). We showed that the number density of CIV absorbers more than doubled in the almost three-billion years probed by the SDSS survey. Statistically, all of these strong CIV systems are consistent with UV-selected galaxies having CIV-absorbing halos, extending out to 100 physical kpc. We also measured an exponential distribution of CIV strengths. Previous smaller, more sensitive surveys found the distribution to be fit best by a power law. Now we combine the SDSS systems with one of these more sensitive surveys (D'Odorico et al. 2010) in order to model the full distribution of CIV absorbers.
    01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: By means of high-resolution cosmological hydrodynamical simulations of Milky Way (MW) like disc galaxies, we conduct an analysis of the associated stellar metallicity distribution functions (MDFs). After undertaking a kinematic decomposition of each simulation into spheroid and disc subcomponents, we compare the predicted MDFs to those observed in the solar neighbourhood and the Galactic bulge. The effects of the star formation density threshold are visible in the star formation histories, which show a modulation in their behaviour driven by the threshold. The derived MDFs show median metallicities lower by 0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic bulge. Possible reasons for this apparent discrepancy include the use of low stellar yields and/or centrally concentrated star formation. The dispersions are larger than the one of the observed MDF; this could be due to simulated discs being kinematically hotter relative to the MW. The fraction of low-metallicity stars is largely overestimated, visible from the more negatively skewed MDF with respect to the observational sample. For our fiducial MW analogue, we study the metallicity distribution of the stars born in situ relative to those formed via accretion (from disrupted satellites), and demonstrate that this low-metallicity tail to the MDF is populated primarily by accreted stars. Enhanced supernova and stellar radiation energy feedback to the surrounding interstellar media of these pre-disrupted satellites is suggested as an important regulator of the MDF skewness.
    Monthly Notices of the Royal Astronomical Society 12/2012; 427(2):1401-1417. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the chemical properties of 5 cosmological hydrodynamical simulations of an M33-like disc galaxy which have been shown to be consistent with the morphological characteristics and bulk scaling relations expected of late-type spirals. These simulations are part of the Making Galaxies In a Cosmological Context (MaGICC) Project, in which stellar feedback is tuned to match the stellar mass -- halo mass relationship. Each realisation employed identical initial conditions and assembly histories, but differed from one another in their underlying baryonic physics prescriptions, including (a) the efficiency with which each supernova energy couples to the ISM, (b) the impact of feedback associated with massive star radiation pressure, (c) the role of the minimum shut-off time for radiative cooling of Type II SNe remnants, (d) the treatment of metal diffusion, and (e) varying the IMF. Our analysis focusses on the resulting stellar metallicity distribution functions (MDFs) in each simulated (analogous) `solar neighbourhood' and central `bulge' region. We compare the simulated MDFs' skewness, kurtosis, and dispersion (inter-quartile, inter-decile, inter-centile, and inter-tenth-percentile regions) with that of the empirical solar neighbourhood MDF and Local Group dwarfs. We find that the MDFs of the simulated discs are more negatively skewed, with higher kurtosis, than those observed locally. We can trace this difference to the simulations' tight and correlated age-metallicity relations (compared with that of the Milky Way), suggesting that these relations within `dwarf' discs might be steeper than in L* discs and/or the degree of stellar orbital re-distribution and migration inferred locally has not been captured in their entirety, at the resolution of our simulations. The important role of metal diffusion in ameliorating the over-production of extremely metal-poor stars is highlighted.
    Monthly Notices of the Royal Astronomical Society 09/2012; 425(2):969. · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new chemodynamical code – Ramses-CH – for use in simulating the self-consistent evolution of chemical and hydrodynamical properties of galaxies within a fully cosmological framework. We build upon the adaptive mesh refinement code Ramses, which includes a treatment of self-gravity, hydrodynamics, star formation, radiative cooling, and supernovae feedback, to trace the dominant isotopes of C, N, O, Ne, Mg, Si, and Fe. We include the contribution of Type Ia and II supernovae, in addition to low-and intermediate-mass asymptotic giant branch stars, relaxing the instantaneous recycling approximation. The new chemical evolution modules are highly flexible and portable, lending themselves to ready exploration of variations in the underpining stellar and nuclear physics. We apply Ramses-CH to the cosmological simulation of a typical L ⋆ galaxy, demonstrating the successful recovery of the basic empirical constraints regarding, [α/Fe]–[Fe/H] and Type Ia/II supernovae rates.
    Monthly Notices of the Royal Astronomical Society 05/2012; 000:1-5. · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We empirically test the relation between the SFR(LIR) derived from the infrared luminosity, LIR, and the SFR(Ha) derived from the Ha emission line luminosity using simple conversion relations. We use a sample of 474 galaxies at z = 0.06 - 0.46 with both Ha detection (from 20k zCOSMOS survey) and new far-IR Herschel data (100 and 160 {\mu}m). We derive SFR(Ha) from the Ha extinction corrected emission line luminosity. We find a very clear trend between E(B - V) and LIR that allows to estimate extinction values for each galaxy even if the Ha emission line measurement is not reliable. We calculate the LIR by integrating from 8 up to 1000 {\mu}m the SED that is best fitting our data. We compare SFR(Ha) with the SFR(LIR). We find a very good agreement between the two SFR estimates, with a slope of m = 1.01 \pm 0.03 in the SFR(LIR) vs SFR(Ha) diagram, a normalization constant of a = -0.08 \pm 0.03 and a dispersion of sigma = 0.28 dex.We study the effect of some intrinsic properties of the galaxies in the SFR(LIR)-SFR(Ha) relation, such as the redshift, the mass, the SSFR or the metallicity. The metallicity is the parameter that affects most the SFR comparison. The mean ratio of the two SFR estimators log[SFR(LIR)/SFR(Ha)] varies by approx. 0.6 dex from metal-poor to metal-rich galaxies (8.1 < log(O/H) + 12 < 9.2). This effect is consistent with the prediction of a theoretical model for the dust evolution in spiral galaxies. Considering different morphological types, we find a very good agreement between the two SFR indicators for the Sa, Sb and Sc morphologically classified galaxies, both in slope and normalization. For the Sd, irregular sample (Sd/Irr), the formal best-fit slope becomes much steeper (m = 1.62 \pm 0.43), but it is still consistent with 1 at the 1.5 sigma level, because of the reduced statistics of this sub-sample.
    Monthly Notices of the Royal Astronomical Society 05/2012; 426(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine radial and vertical metallicity gradients using a suite of disk galaxy simulations, supplemented with two classic chemical evolution approaches. We determine the rate of change of gradient and reconcile differences between extant models and observations within the `inside-out' disk growth paradigm. A sample of 25 disks is used, consisting of 19 from our RaDES (Ramses Disk Environment Study) sample, realised with the adaptive mesh refinement code RAMSES. Four disks are selected from the MUGS (McMaster Unbiased Galaxy Simulations) sample, generated with the smoothed particle hydrodynamics (SPH) code GASOLINE, alongside disks from Rahimi et al. (GCD+) and Kobayashi & Nakasato (GRAPE-SPH). Two chemical evolution models of inside-out disk growth were employed to contrast the temporal evolution of their radial gradients with those of the simulations. We find that systematic differences exist between the predicted evolution of radial abundance gradients in the RaDES and chemical evolution models, compared with the MUGS sample; specifically, the MUGS simulations are systematically steeper at high-redshift, and present much more rapid evolution in their gradients. We find that the majority of the models predict radial gradients today which are consistent with those observed in late-type disks, but they evolve to this self-similarity in different fashions, despite each adhering to classical `inside-out' growth. We find that radial dependence of the efficiency with which stars form as a function of time drives the differences seen in the gradients; systematic differences in the sub-grid physics between the various codes are responsible for setting these gradients. Recent, albeit limited, data at redshift z=1.5 are consistent with the steeper gradients seen in our SPH sample, suggesting a modest revision of the classical chemical evolution models may be required.
    Astronomy and Astrophysics 01/2012; 540:12. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a measurement of the Lyman alpha flux probability distribution function (PDF) measured from a set of eight high resolution quasar spectra with emission redshifts at 3.3 < z < 3.8. We carefully study the effect of metal absorption lines on the shape of the PDF. Metals have a larger impact on the PDF measurements at lower redshift, where there are fewer Lyman alpha absorption lines. This may be explained by an increase in the number of metal lines which are blended with Lyman alpha absorption lines toward higher redshift, but may also be due to the presence of fewer metals in the intergalactic medium with increasing lookback time. We also provide a new measurement of the redshift evolution of the effective optical depth, tau_eff, at 2.8 < z < 3.6, and find no evidence for a deviation from a power law evolution in the log(tau_eff)-log(1+z) plane. The flux PDF measurements are furthermore of interest for studies of the thermal state of the intergalactic medium (IGM) at z ~ 3 . By comparing the PDF to state-of-the-art cosmological hydrodynamical simulations, we place constraints on the temperature of the IGM and compare our results with previous measurements of the PDF at lower redshift. At redshift z=3, our new PDF measurements are consistent with an isothermal temperature-density relation, T=T_0 Delta^{gamma-1}, with a temperature at the mean density of T_0 = 19250 +/- 4800 K and a slope gamma=0.90+/-0.21 (1 sigma uncertainties). In comparison, joint constraints with previous PDF measurements at z<3 favour an inverted (gamma<1) temperature-density relation with T_0=17900 +/- 3500 K and gamma=0.70 +/- 0.12, in broad agreement with previous analyses.
    Monthly Notices of the Royal Astronomical Society 01/2012; 422(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the first paper of this series, we proposed a new framework in which to model the chemical evolution of globular clusters. This model is predicated upon the assumption that clusters form within an interstellar medium enriched locally by the ejecta of a single Type Ia supernova and varying numbers of asymptotic giant branch stars, superimposed on an ambient medium pre-enriched by low-metallicity Type II supernovae. Paper I was concerned with the application of this model to the observed abundances of several reactive elements and so-called non-metals for three classical intermediate-metallicity clusters, with the hallmark of the work being the successful recovery of many of their well-known elemental and isotopic abundance anomalies. Here, we expand upon our initial analysis by (i) applying the model to a much broader range of metallicities (from the factor of 3 explored in Paper I, to now a factor of ∼50; i.e. essentially, the full range of Galactic globular cluster abundances; and (ii) incorporating a broader suite of chemical species, including a number of iron-peak isotopes, heavier -elements and fluorine. While allowing for an appropriate fine-tuning of the model input parameters, most empirical globular cluster abundance trends are reproduced; our model would suggest the need for a higher production of calcium, silicon and copper in low-metallicity (or so-called ‘prompt’) Type Ia supernovae than predicted in current stellar models in order to reproduce the observed trends in NGC 6752, and a factor of 2 reduction in carbon production from asymptotic giant branch stars to explain the observed trends between carbon and nitrogen. Observations of heavy-element isotopes produced primarily by Type Ia supernovae, including those of titanium, iron and nickel, could support/refute unequivocally our proposed framework, although currently the feasibility of the proposed observations is well beyond current instrumental capabilities. Hydrodynamical simulations would be necessary to study its viability from a dynamical point of view.
    Monthly Notices of the Royal Astronomical Society 01/2012; 419(2):1376 - 1389. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cosmic star formation rate (CSFR), is an important clue to investigate the history of the assembly and evolution of galaxies. Here, we develop a method to study the CSFR from a purely theoretical point of view. Starting from detailed models of chemical evolution, we obtain the histories of star formation of galaxies of different morphological types. These histories are then used to determine the luminosity functions of the same galaxies by means of a spectro-photometric code. We obtain the CSFR under different hypothesis. First, we study the hypothesis of a pure luminosity evolution scenario, in which all galaxies are supposed to form at the same redshift and then evolve only in luminosity. Then we consider scenarios in which the number density or the slope of the LFs are assumed to vary with redshift. After comparison with available data we conclude that a pure luminosity evolution does not provide a good fit to the data, especially at very high redshift, although many uncertainties are still present in the data. On the other hand, a variation in the number density of ellipticals and spirals as a function of redshift can provide a better fit to the observed CSFR. We also explore cases of variable slope of the LFs with redshift and variations of number density and slope at the same time. We cannot find any of those cases which can improve the fit to the data respect to the solely number density variation. Finally, we compute the evolution of the average cosmic metallicity in galaxies with redshift.
    Monthly Notices of the Royal Astronomical Society 01/2012; 421(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the first paper in this series, we proposed a new framework in which to model the chemical evolution of globular clusters. This model, is predicated upon the assumption that clusters form within an interstellar medium enriched locally by the ejecta of a single Type Ia supernova and varying numbers of asymptotic giant branch stars, superimposed on an ambient medium pre-enriched by low-metallicity Type II supernovae. Paper I was concerned with the application of this model to the observed abundances of several reactive elements and so-called non-metals for three classical intermediate-metallicity clusters, with the hallmark of the work being the successful recovery of many of their well-known elemental and isotopic abundance anomalies. Here, we expand upon our initial analysis by (a) applying the model to a much broader range of metallicities (from the factor of three explored in Paper I, to now, a factor of ~50; i.e., essentially, the full range of Galactic globular cluster abundances, and (b) incorporating a broader suite of chemical species, including a number of iron-peak isotopes, heavier alpha-elements, and fluorine. While most empirical globular cluster abundance trends are reproduced, our model would suggest the need for a higher production of Ca, Si, and Cu in low-metallicity (or so-called "prompt") Type Ia supernovae than predicted in current stellar models in order to reproduce the observed trends in NGC 6752, and a factor of two reduction in carbon production from asymptotic giant branch stars to explain the observed trends between carbon and nitrogen. Observations of heavy-element isotopes produced primarily by Type Ia supernovae, including those of titanium, iron, and nickel, could support/refute unequivocally our proposed framework. Hydrodynamical simulations would be necessary to study its viability from a dynamical point of view.
    Monthly Notices of the Royal Astronomical Society 09/2011; 419(2). · 5.52 Impact Factor

Publication Stats

575 Citations
279.76 Total Impact Points

Institutions

  • 2006–2014
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
    • Universita degli studi di Ferrara
      • Department of Physics and Earth Sciences
      Ferrare, Emilia-Romagna, Italy
  • 2012
    • Monash University (Australia)
      Melbourne, Victoria, Australia
  • 2011
    • University of Central Lancashire
      Preston, England, United Kingdom
  • 2009
    • University of Florence
      Florens, Tuscany, Italy
  • 2003–2009
    • Università degli Studi di Trieste
      • Department of Physics
      Trst, Friuli Venezia Giulia, Italy
  • 2008
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, Scotland, United Kingdom