Ralph P. Kraft

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States

Are you Ralph P. Kraft?

Claim your profile

Publications (77)166.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radio-loud AGN play an important r\^ole in galaxy evolution. We need to understand their properties, and the processes that affect their behaviour in order to model galaxy formation and development. We here present preliminary results of an investigation into the cluster environments of radio galaxies. We have found evidence of a strong correlation between radio luminosity and environment richness for low excitation radio galaxies, and no evidence of evolution of the environment with redshift. Conversely, for high excitation radio galaxies, we found no correlation with environment richness, and tentative evidence of evolution of the cluster environment.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the energetic feedback from active galactic nuclei (AGN) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of the AGN heating remain elusive. Here, we study NGC 193 - a nearby lenticular galaxy - based on X-ray (Chandra) and radio (VLA and GMRT) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ~78 Myr ago by a weaker AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and (4-8) times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.
    01/2014; 782(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a combined galaxy population analysis for the host galaxies of active galactic nuclei (AGN) identified at 0 < z < 1.4 within the SDSS, Bootes and DEEP2 surveys. We identified AGN in a uniform and unbiased manner at X-ray, infrared and radio wavelengths. Supermassive black holes undergoing radiatively-efficient accretion (detected as X-ray and/or infrared AGN) appear to be hosted in a separate and distinct galaxy population than AGN undergoing powerful mechanically dominated accretion (radio AGN). Consistent with some previous studies, radiatively efficient AGN appear to be preferentially hosted in modest star-forming galaxies, with little dependence on AGN or galaxy luminosity. AGN exhibiting radio-emitting jets due to mechanically-dominated accretion are almost exclusively observed in massive, passive galaxies. Crucially, we now provide strong evidence that the observed host-galaxy trends are independent of redshift. In particular, these different accretion-mode AGN have remained as separate galaxy populations throughout the last 9 Gyr. Furthermore, it appears that galaxies hosting AGN have evolved along the same path as galaxies that are not hosting AGN with little evidence for distinctly separate evolution.
    The Astrophysical Journal 10/2013; 783(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Every object in the Solar system emits X-rays, although the nature and magnitude of this emission varies. In every case sensitive X-ray imaging and spectroscopic measurements would provide direct information about a wide range of atmospheric, magnetospheric, and geologic processes that cannot be gleaned from observations in other energy bands. We are developing a CMOS-based sensor that when combined with existing X-ray telescope technologies would provide a significant advance in capability to the planetary community. Advantages of this sensor technology over other Si-based imagers such as CCDs include near Fano-limited performance to 100 eV, extreme radiation hardness, high speed windowing, high frame rates to handle high fluxes in single counting mode, and low power mW). Our instrument could detect all the CHNOPS elements, and most importantly carbon, via X-ray fluorescence from rocky bodies in the Solar system. Additionally, our sensor could be used for plasma investigations in the magnetospheres of the gas giants in particle environments that would rapidly destroy other Si imaging technologies. In this poster we describe the unique planetary investigations that could be made with this instrument, and present the current status of our instrumentation development.
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new Chandra observations of Abell 2199 that show evidence of gas sloshing due to a minor merger, as well as impacts of the radio source, 3C 338, hosted by the central galaxy, NGC 6166, on the intracluster gas. The new data are consistent with previous evidence of a Mach 1.46 shock 100" from the cluster center, although there is still no convincing evidence for the expected temperature jump. Other interpretations of this feature are possible, but none is fully satisfactory. Large scale asymmetries, including enhanced X-ray emission 200" southwest of the cluster center and a plume of low entropy, enriched gas reaching 50" to the north of the center, are signatures of gas sloshing induced by core passage of a merging subcluster about 400 Myr ago. An association between the unusual radio ridge and low entropy gas are consistent with this feature being the remnant of a former radio jet that was swept away from the AGN by gas sloshing. A large discrepancy between the energy required to produce the 100" shock and the enthalpy of the outer radio lobes of 3C 338 suggests that the lobes were formed by a more recent, less powerful radio outburst. Lack of evidence for shocks in the central 10" indicates that the power of the jet now is some two orders of magnitude smaller than when the 100" shock was formed.
    The Astrophysical Journal 07/2013; 775(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics.
    06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of luminous hot X-ray coronae in the dark matter halos of massive spiral galaxies is a basic prediction of galaxy formation models. However, observational evidence for such coronae is very scarce, with the first few examples having only been detected recently. In this paper, we study the large-scale diffuse X-ray emission associated with the massive spiral galaxy NGC266. Using ROSAT and Chandra X-ray observations we argue that the diffuse emission extends to at least ~70 kpc, whereas the bulk of the stellar light is confined to within ~25 kpc. Based on X-ray hardness ratios, we find that most of the diffuse emission is released at energies <1.2 keV, which indicates that this emission originates from hot X-ray gas. Adopting a realistic gas temperature and metallicity, we derive that in the (0.05-0.15)r_200 region (where r_200 is the virial radius) the bolometric X-ray luminosity of the hot gas is (4.3 +/- 0.8) x 10^40 erg/s and the gas mass is (9.1 +/- 0.9) x 10^9 M_sun. These values are comparable to those observed for the two other well-studied X-ray coronae in spiral galaxies, suggesting that the physical properties of such coronae are similar. This detection offers an excellent opportunity for comparison of observations with detailed galaxy formation simulations.
    The Astrophysical Journal 06/2013; 772(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a spectral investigation of X-ray binaries in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column, and present the spectral parameters of sources with L >2x10^37 erg/s. The majority of sources are consistent with being neutron star low mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant of a small late-type galaxy. Our results also provide tentative support for the apparent `gap' in the mass distribution of compact objects between ~2-5 Msol. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority (~70-80%) of potential Roche-lobe filling donors in the Cen A halo are >12 Gyr old, while BH LMXBs require donors >1 Msol to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at Lx >= 5x10^38 erg/s for the XB population of early-type galaxies; for older stellar populations, there are fewer stars >1 Msol, which are required to form the more luminous sources.
    The Astrophysical Journal 04/2013; 766(2):88. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structure formation models predict that clusters of galaxies contain numerous massive subhalos. The gravity of a subhalo in a cluster compresses the surrounding intracluster gas and enhances its X-ray emission. We present a simple model, which treats subhalos as slow moving and gasless, for computing this effect. Recent weak lensing measurements by Okabe et al. have determined masses of ~ 10^13 solar masses for three mass concentrations projected within 300 kpc of the center of the Coma Cluster, two of which are centered on the giant elliptical galaxies NGC 4889 and NGC 4874. Adopting a smooth spheroidal beta-model for the gas distribution in the unperturbed cluster, we model the effect of these subhalos on the X-ray morphology of the Coma Cluster, comparing our results to Chandra and XMM-Newton X-ray data. The agreement between the models and the X-ray morphology of the central Coma Cluster is striking. With subhalo parameters from the lensing measurements, the distances of the three subhalos from the Coma Cluster midplane along our line of sight are all tightly constrained. Using the model to fit the subhalo masses for NGC 4889 and NGC 4874 gives 9.1 x 10^12 and 7.6 x 10^12 solar masses, respectively, in good agreement with the lensing masses. These results lend strong support to the argument that NGC 4889 and NGC 4874 are each associated with a subhalo that resides near the center of the Coma Cluster. In addition to constraining the masses and 3-d location of subhalos, the X-ray data show promise as a means of probing the structure of central subhalos.
    The Astrophysical Journal 02/2013; 766(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Luminous X-ray gas coronae in the dark matter halos of massive spiral galaxies are a fundamental prediction of structure formation models, yet only a few such coronae have been detected so far. In this paper, we study the hot X-ray coronae beyond the optical disks of two normal massive spirals, NGC1961 and NGC6753. Based on XMM-Newton X-ray observations, hot gaseous emission is detected to ~60 kpc - well beyond their optical radii. The hot gas has a best-fit temperature of kT~0.6 keV and an abundance of ~0.1 Solar, and exhibits a fairly uniform distribution, suggesting that the quasi-static gas resides in hydrostatic equilibrium in the potential well of the galaxies. The bolometric luminosity of the gas in the (0.05-0.15)r_200 region (r_200 is the virial radius) is ~6e40 erg/s for both galaxies. The baryon mass fractions of NGC1961 and NGC6753 are f_b~0.1, which fall short of the cosmic baryon fraction. The hot coronae around NGC1961 and NGC6753 offer an excellent basis to probe structure formation simulations. To this end, the observations are confronted with the moving mesh code Arepo and the smoothed particle hydrodynamics code Gadget. Although neither model gives a perfect description, the observed luminosities, gas masses, and abundances favor the Arepo code. Moreover, the shape and the normalization of the observed density profiles are better reproduced by Arepo within ~0.5r_200. However, neither model incorporates efficient feedback from supermassive black holes or supernovae, which could alter the simulated properties of the X-ray coronae. With the further advance of numerical models, the present observations will be essential in constraining the feedback effects in structure formation simulations.
    The Astrophysical Journal 12/2012; 772(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last ~1.3-1.6 Gyrs. Both the northern and the southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge. We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. (1995) and are confirmed in our deep observation.
    The Astrophysical Journal 10/2012; 764(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We are developing monolithic backside illuminated CMOS detectors as soft X-ray imaging spectrometers for high energy astrophysics missions. These devices represent a significant advance over CCD technology and have unique properties that would make them ideal sensors for various planetary mission concepts. The benefits of CMOS include higher levels of integration which provide maximum pixel gain and therefore very low noise, very fast parallel output signal chains for high frame rates. CMOS imaging detectors have zero or one charge transfer so that they can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs provide near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines. Possible mission concepts for these sensors include X-ray fluorescence studies of rocky bodies, and investigation of the magnetospheres of the gas giants and their moons. In this presentation, we discuss the current state of our technology development and outline its scientific potential for planetary physics with particular emphasis on studies of the Jovian magnetosphere. We contrast the capabilities of our instrument with that which has been achieved by the current generation of Earth-orbiting X-ray observatories.
    LPI Contributions. 10/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Massive galaxies harbor a supermassive black hole at their centers. At high redshifts, these galaxies experienced a very active quasar phase, when, as their black holes grew by accretion, they produced enormous amounts of energy. At the present epoch, these black holes still undergo occasional outbursts, although the mode of their energy release is primarily mechanical rather than radiative. The energy from these outbursts can reheat the cooling gas in the galaxy cores and maintain the red and dead nature of the early-type galaxies. These outbursts also can have dramatic effects on the galaxy-scale hot coronae found in the more massive galaxies. We describe research in three areas related to the hot gas around galaxies and their supermassive black holes. First we present examples of galaxies with AGN outbursts that have been studied in detail. Second, we show that X-ray emitting low-luminosity AGN are present in 80% of the galaxies studied. Third, we discuss the first examples of extensive hot gas and dark matter halos in optically faint galaxies.
    Proceedings of the International Astronomical Union 08/2012; 8(S295).
  • 07/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9+3.8– 2.3% and 1.9% ± 0.6%, respectively, which significantly exceed the typical observed ratio of ~0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are 5.1σ and 3.4σ outliers from the M •-M bulge scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.
    The Astrophysical Journal 06/2012; 753(2):140. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of hot X-ray emitting gas is ubiquitous in massive early-type galaxies. However, much less is known about the content and physical status of the hot X-ray gas in low-mass ellipticals. In the present paper we study the X-ray gas content of four low-mass elliptical galaxies using archival Chandra X-ray observations. The sample galaxies, NGC821, NGC3379, NGC4278, and NGC4697, have approximately identical K-band luminosities, and hence stellar masses, yet their X-ray appearance is strikingly different. We conclude that the unresolved emission in NGC821 and NGC3379 is built up from a multitude of faint compact objects, such as coronally active binaries and cataclysmic variables. Despite the non-detection of X-ray gas, these galaxies may host low density, and hence low luminosity, X-ray gas components, which undergo a Type Ia supernova (SN Ia) driven outflow. We detect hot X-ray gas with a temperature of kT ~ 0.35 keV in NGC4278, the component of which has a steeper surface brightness distribution than the stellar light. Within the central 50 arcsec (~3.9 kpc) the estimated gas mass is ~3 x 10^7 M_sun, implying a gas mass fraction of ~0.06%. We demonstrate that the X-ray gas exhibits a bipolar morphology in the northeast-southwest direction, indicating that it may be outflowing from the galaxy. The mass and energy budget of the outflow can be maintained by evolved stars and SNe Ia, respectively. The X-ray gas in NGC4697 has an average temperature of kT ~ 0.3 keV, and a significantly broader distribution than the stellar light. The total gas mass within 90 arcsec (~5.1 kpc) is ~2.1 x 10^8 M_sun, hence the gas mass fraction is ~0.4%. Based on the distribution and physical parameters of the X-ray gas, we conclude that it is most likely in hydrostatic equilibrium, although a subsonic outflow may be present.
    The Astrophysical Journal 06/2012; 758(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chandra X-ray observations of NGC4342, a low stellar mass (M_K=-22.79 mag) early-type galaxy, show luminous, diffuse X-ray emission originating from hot gas with temperature of kT~0.6 keV. The observed 0.5-2 keV band luminosity of the diffuse X-ray emission within the D_25 ellipse is L_0.5-2keV = 2.7 x 10^39 erg/s. The hot gas has a significantly broader distribution than the stellar light, and shows strong hydrodynamic disturbances with a sharp surface brightness edge to the northeast and a trailing tail. We identify the edge as a cold front and conclude that the distorted morphology of the hot gas is produced by ram pressure as NGC4342 moves through external gas. From the thermal pressure ratios inside and outside the cold front, we estimate the velocity of NGC4342 and find that it moves supersonically (M~2.6) towards the northeast. Outside the optical extent of the galaxy we detect ~17 bright (L_0.5-8keV > 3 x 10^37 erg/s) excess X-ray point sources. The excess sources are presumably low-mass X-ray binaries (LMXBs) located in metal-poor globular clusters (GCs) in the extended dark matter halo of NGC4342. Based on the number of excess sources and the average frequency of bright LMXBs in GCs, we estimate that NGC4342 may host roughly 850-1700 GCs. In good agreement with this, optical observations hint that NGC4342 may harbor 1200 +/- 500 GCs. This number corresponds to a GC specific frequency of S_N = 19.9 +/- 8.3, which is among the largest values observed in full-size galaxies.
    The Astrophysical Journal 03/2012; 755(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a bright X-ray transient, CXOU J132527.6-430023, in the nearby early-type galaxy NGC 5128. The source was first detected over the course of five Chandra observations in 2007, reaching an unabsorbed outburst luminosity of 1-2*10^38 erg/s in the 0.5-7.0 keV band before returning to quiescence. Such luminosities are possible for both stellar-mass black hole and neutron star X-ray binary transients. Here, we attempt to characterize the nature of the compact object. No counterpart has been detected in the optical or radio sky, but the proximity of the source to the dust lanes allows for the possibility of an obscured companion. The brightness of the source after a >100 fold increase in X-ray flux makes it either the first confirmed transient non-ULX black hole system in outburst to be subject to detailed spectral modeling outside the Local Group, or a bright (>10^38 erg/s) transient neutron star X-ray binary, which are very rare. Such a large increase in flux would appear to lend weight to the view that this is a black hole transient. X-ray spectral fitting of an absorbed power law yielded unphysical photon indices, while the parameters of the best-fit absorbed disc blackbody model are typical of an accreting ~10 Msol black hole in the thermally dominant state.
    The Astrophysical Journal 02/2012; 749(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on Chandra and ROSAT observations, we investigated the nearby poor cluster A194, which hosts two luminous radio galaxies, NGC 547 (3C 40B) and NGC 541 (3C 40A). We demonstrated the presence of a large X-ray cavity (r ~ 34 kpc) formed by the giant southern radio lobe arising from 3C 40B in NGC 547. The estimated age of the cavity is t = 7.9 × 107 years and the total work of the active galactic nucleus is 3.3 × 1059 erg, hence the cavity power is P cav = 1.3 × 1044 erg s–1. Furthermore, in the Chandra images of NGC 545 and NGC 541 we detected sharp surface brightness edges, identified as merger cold fronts, and extended tails. Using the pressure ratios between inside and outside the cold fronts we estimated that the velocities of NGC 545 and NGC 541 correspond to Mach numbers of M = 1.0+0.3 –0.5 and M = 0.9+0.2 –0.5, respectively. The low radial velocities of these galaxies relative to the mean radial velocity of A194 imply that their motion is oriented approximately in the plane of the sky. Based on these and earlier observations, we concluded that NGC 545 and NGC 541 are falling through the cluster, whose center is NGC 547, suggesting that A194 is undergoing a significant cluster merger event. Additionally, we detected 20 bright X-ray sources around NGC 547 and NGC 541, a surprisingly large number, since the predicted number of resolved low-mass X-ray binaries and cosmic X-ray background sources is 2.2 and 4.1, respectively. To explain the nature of additional sources, different possibilities were considered, none of which are satisfactory. We also studied the origin of X-ray emission in Minkowski's object (MO) and concluded that it is most likely dominated by the population of high-mass X-ray binaries rather than by hot diffuse interstellar medium. Moreover, in view of the galaxy dynamics in A194, we explored the possibility that the starburst in MO was triggered by its past interaction with NGC 541, and concluded that it may be a viable path.
    The Astrophysical Journal 11/2011; 743(1):59. · 6.73 Impact Factor
  • Source
    08/2011;

Publication Stats

267 Citations
166.48 Total Impact Points

Institutions

  • 1998–2014
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2013
    • University of Birmingham
      • School of Physics and Astronomy
      Birmingham, England, United Kingdom
  • 2010
    • University of Hertfordshire
      • School of Physics, Astronomy and Mathematics
      Hatfield, England, United Kingdom
  • 2008
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany
  • 2007
    • Washington State University
      • Department of Physics and Astronomy
      Pullman, Washington, United States