Christopher J Cifelli

Pennsylvania State University, University Park, MD, United States

Are you Christopher J Cifelli?

Claim your profile

Publications (9)32.33 Total impact

  • A Catharine Ross, Christopher J Cifelli, Reza Zolfaghari, Nan-Qian Li
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin A (retinol) is an essential precursor for the production of retinoic acid (RA), which in turn is a major regulator of gene expression, affecting cell differentiation throughout the body. Understanding how vitamin A nutritional status, as well as therapeutic retinoid treatment, regulates the expression of retinoid homeostatic genes is important for improvement of dietary recommendations and therapeutic strategies using retinoids. This study investigated genes central to processes of retinoid uptake and storage, release to plasma, and oxidation in the liver of rats under steady-state conditions after different exposures to dietary vitamin A (deficient, marginal, adequate, and supplemented) and acutely after administration of a therapeutic dose of all-trans-RA. Over a very wide range of dietary vitamin A, lecithin:retinol acyltransferase (LRAT) as well as multiple cytochrome P-450s (CYP26A1, CYP26B1, and CYP2C22) differed by diet and were highly correlated with one another and with vitamin A status assessed by liver retinol concentration (all correlations, P < 0.05). After acute treatment with RA, the same genes were rapidly and concomitantly induced, preceding retinoic acid receptor (RAR)β, a classical direct target of RA. CYP26A1 mRNA exhibited the greatest dynamic range (change of log 2(6) in 3 h). Moreover, CYP26A1 increased more rapidly in the liver of RA-primed rats than naive rats, evidenced by increased CYP26A1 gene expression and increased conversion of [(3)H]RA to polar metabolites. By in situ hybridization, CYP26A1 mRNA was strongly regulated within hepatocytes, closely resembling retinol-binding protein (RBP)4 in location. Overall, whether RA is produced endogenously from retinol or administered exogenously, changes in retinoid homeostatic gene expression simultaneously favor both retinol esterification and RA oxidation, with CYP26A1 exhibiting the greatest dynamic change.
    Physiological Genomics 11/2010; 43(1):57-67. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin A (VA) kinetics, storage, and disposal rate were determined in well-nourished Chinese and U.S. adults using model-based compartmental analysis. [(2)H(8)]Retinyl acetate (8.9 micromol) was orally administered to U.S. (n = 12; 59 +/- 9 y; mean +/- SD) and Chinese adults (n = 14; 54 +/- 4 y) and serum tracer and VA concentrations were measured from 3 h to 56 d. Using the Windows version of the Simulation, Analysis and Modeling software, we determined that the average time from dosing until appearance of labeled retinol in serum was greater in U.S. subjects (40.6 +/- 8.47 h) than in Chinese subjects (32.2 +/- 5.84 h; P < 0.01). Model-predicted total traced mass (898 +/- 637 vs. 237 +/- 109 micromol), disposal rate (14.7 +/- 5.87 vs. 5.58 +/- 2.04 micromol/d), and system residence time (58.9 +/- 28.7 vs. 42.9 +/- 14.6 d) were greater in U.S. than in Chinese subjects (P < 0.05). The model-predicted VA mass and VA mass estimated by deuterated retinol dilution at 3 and 24 d did not differ. VA disposal rate was positively correlated with VA traced mass in Chinese (R(2) = 0.556), U.S. (R(2) = 0.579), and all subjects (R(2) = 0.808). Additionally, VA disposal rate was significantly correlated with serum retinol pool size (R(2) = 0.227) and retinol concentration (R(2) = 0.330) in all subjects. Our results support the hypothesis that VA stores are the principle determinant of VA disposal rate in healthy, well-nourished adults.
    Journal of Nutrition 05/2008; 138(5):971-7. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoic acid (RA), a principal metabolite of vitamin A (retinol), is an essential endogenous regulator of gene transcription and an important therapeutic agent. The catabolism of RA must be well regulated to maintain physiological concentrations of RA. The cytochrome P450 (CYP) gene family CYP26, which encodes RA-4-hydroxylase activity, is strongly implicated in the oxidation of RA. Inflammation alters the expression of numerous genes; however, whether inflammation affects CYP26 expression is not well understood. We investigated the regulation of CYP26A1 and CYP26B1 mRNA levels by RA and LPS in the rat liver, as the liver is centrally involved in retinoid metabolism and the acute-phase response to LPS. Both CYP26A1 and CYP26B1 mRNA were induced in <4 h by a single oral dose of all-trans-RA. RA-induced responses of both CYP26A1 and CYP26B1 were significantly attenuated in rats with LPS-induced inflammation whether LPS was given concurrently with RA or after the RA-induced increase in CYP26A1 and CYP26B1 mRNA levels. When RA and LPS were administered simultaneously (6-h study), LPS alone had little effect on either CYP26A1 or CP26B1 mRNA, but LPS reduced by 80% the RA-induced increase in CYP26A1 mRNA (P<0.02), with a similar trend for CYP26B1 mRNA. When LPS was administered 4 h after RA (16-h study), it abrogated the induction of CYP26A1 (P<0.02) and CYP26B1 (P<0.01). Overall, these results suggest that inflammation can potentially disrupt the balance of RA metabolism and maintenance of RA homeostasis, which may possibly affect the expression of other RA-regulated genes.
    AJP Gastrointestinal and Liver Physiology 04/2007; 292(4):G1029-36. · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurological development and functioning of dopamine (DA) neurotransmission is adversely affected by iron deficiency in early life. Iron-deficient rats demonstrate significant elevations in extracellular DA and a reduction in dopamine transporter (DAT) densities in the caudate putamen and nucleus accumbens. To explore possible mechanisms by which cellular iron concentrations control DAT functioning, endogenous DAT-expressing PC12 cells were used to determine the effect of iron chelation on DAT protein and mRNA expression patterns. In addition, we used human DAT (hDAT)-transfected Neuro2a (N2A) cells to examine DAT degradation and trafficking patterns. A 50 microM treatment for 24 h with the iron chelator, desferrioxamine (DFO), significantly decreased dopamine uptake in a dose-dependent manner, with no apparent change in K(m), in both PC12 and N2A cells. Reduced DA uptake was accompanied by concentration- and time-dependent reductions in total DAT protein levels in both cell lines. Exposure to increasing concentrations of DFO did not significantly alter DAT mRNA in either PC12 or N2A cells. However, DAT degradation rates increased three-fivefold in both cell types exposed to 50 microM DFO for 24 h. Biotinylation studies in N2A cells indicate a more dramatic loss of DAT in the membrane fraction, while OptiPrep fractionation experiments revealed an increase in lysosomal DAT with iron chelation. Inhibition of protein kinase C activation with staurosporin prevented the effect of iron chelation on DAT function, suggesting that in vitro iron chelation affects DAT primarily through the effects on trafficking rather than on synthesis.
    Journal of Neurochemistry 02/2007; 100(1):167-79. · 3.97 Impact Factor
  • Christopher J Cifelli, Joanne Balmer Green, Michael H Green
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the use of mathematical modeling, and specifically model-based compartmental analysis, to analyze vitamin A kinetic data obtained in rat and human studies over the past 25 years. Following an overview of whole-body vitamin A metabolism, a review of early kinetic studies, and an introduction to the approach and terminology of compartmental analysis, we summarize studies done in this laboratory to develop models of whole-body vitamin A metabolism in rats at varying levels of vitamin A status. Highlights of the results of these studies include the extensive recycling of vitamin A among plasma and tissues before irreversible utilization and the existence of significant extrahepatic pools of the vitamin. Our studies also document important differences in vitamin A kinetics as a function of vitamin A status and the importance of plasma retinol pool size in vitamin A utilization rate. Later we describe vitamin A kinetics and models developed for specific organs including the liver, eyes, kidneys, small intestine, lungs, testes, adrenals, and remaining carcass, and we discuss the effects of various exogenous factors (e.g., 4-HPR, dioxin, iron deficiency, dietary retinoic acid, and inflammation) on vitamin A dynamics. We also briefly review the retrospective application of model-based compartmental analysis to human vitamin A kinetic data. Overall, we conclude that the application of model-based compartmental analysis to vitamin A kinetic data provides unique insights into both quantitative and descriptive aspects of vitamin A metabolism and homeostasis in the intact animal.
    Vitamins & Hormones 02/2007; 75:161-95. · 2.30 Impact Factor
  • Source
    Christopher J Cifelli, A Catharine Ross
    [Show abstract] [Hide abstract]
    ABSTRACT: The relation between vitamin A (VA) nutritional status and the metabolism of all-trans-retinoic acid (RA) is not well understood. In this study, we determined the tissue distribution and metabolism of a test dose of [(3)H]-RA in rats with graded, diet-dependent, differences in VA status. The design included 3 groups, designated VA-deficient, VA-marginal, and VA-adequate, with liver total retinol concentrations of 9.7, 35.7 and 359 nmol/g, respectively, (P < 0.05), and an additional group of VA-deficient rats treated with a single oral dose of retinyl palmitate (RP) 20 h before the injection of [(3)H]-RA. Plasma, liver, lung, and small intestines, collected 30 min after [(3)H]-RA, were analyzed for total (3)H, unmetabolized [(3)H]-RA, polar organic-phase metabolites of [(3)H]-RA, and aqueous phase [(3)H]-labeled metabolites. In all groups, [(3)H]-RA was rapidly removed from plasma and concentrated in the liver. VA deficiency did not prevent the oxidative metabolism of RA. Nevertheless, the quantity of [(3)H]-RA metabolites in plasma and the ratio of total [(3)H]-polar metabolites to unmetabolized [(3)H]-RA in liver varied directly with VA status (VA-adequate > VA-marginal > VA-deficient, P < 0.05). Moreover, supplementation of VA-deficient rats with RP reduced the metabolism of [(3)H]-RA, similar to that in VA-adequate or VA-marginal rats. Liver retinol concentration, considered a proxy for VA status, was correlated (P < 0.05) with [(3)H]-RA metabolites in liver (R(2) = 0.54), plasma (R(2) = 0.44), lung (R(2) = 0.40), intestine (R(2) = 0.62), and all combined (R(2) = 0.655). Overall, the results demonstrate close linkage between dietary VA intake, hepatic storage of VA, and the degradation of RA and suggest that measuring plasma retinoid metabolites after a dose of RA may provide insight into the metabolism of this bioactive retinoid by visceral organs.
    Journal of Nutrition 01/2007; 137(1):63-70. · 4.20 Impact Factor
  • Christopher J Cifelli, A Catharine Ross
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinoids, including all-trans-retinoic acid (RA), are considered to have anti-inflammatory properties and are used therapeutically for diseases of the skin and certain cancers. However, few studies have addressed the effects of disease states on RA metabolism. The present study was conducted to better understand the effects of exogenous RA, both in the absence and presence of inflammation, on the distribution and metabolism of a dose of [3H]RA. Female Sprague-Dawley rats fed a low vitamin A diet were pretreated with RA (po), a low dose of lipopolysaccharide (LPS, ip), or their combination. Twelve hours later, albumin-bound [3H]RA was injected intravenously, and tissue organic- and aqueous-phase 3H was determined after 10 and 30 min. In liver and plasma, 3H-labeled organic metabolites (e.g., 4-oxo- and 4-hydroxy-RA) were isolated by solid-phase extraction. LPS-induced inflammation significantly reduced plasma retinol by 47%, increased total 3H in plasma at 10 min, and reduced total 3H in liver at both times. In contrast, RA pretreatment did not affect plasma retinol, significantly increased total 3H in plasma at both times, and did not affect liver total 3H. However, by 30 min, RA significantly increased [3H]RA metabolism in plasma, liver, lung, and small intestine, as indicated by greater 3H-labeled aqueous-phase and 3H-labeled organic-phase metabolites. The results presented here demonstrate that, although LPS-induced inflammation affects the organ distribution of RA, the ability of RA to induce its own catabolism is maintained during inflammation. Thus we conclude that RA and LPS act independently to alter RA metabolism in vitamin A-marginal rats.
    AJP Gastrointestinal and Liver Physiology 09/2006; 291(2):G195-202. · 3.65 Impact Factor
  • Christopher J Cifelli, Joanne Balmer Green, Michael H Green
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the effects of exogenous retinoic acid on vitamin A (VA) metabolism, we analyzed previously collected tracer kinetic data on VA dynamics in rats with low vitamin A (LA) status either with (LA+RA) or without (LA) retinoic acid supplementation. In spite of low VA intake ( approximately 7 nmol/d), the LA+RA rats were in a slight positive VA balance (0.325 nmol/d vs. -0.168 for LA) for 35 d after administration of [(3)H]retinol-labeled plasma. Using the Windows version of the Simulation, Analysis and Modeling software, we determined that the VA disposal rate was lower in LA+RA than in LA rats (3.98 vs. 5.00 nmol/d) as was the system fractional catabolic rate (0.0548 vs. 0.110 d(-1)). Model-predicted traced mass and residence times (the average time that a molecule of retinol spends in an organ before irreversible loss) were higher for liver (19.4 vs. 1.8 nmol; 5.0 vs. 0.36 d), kidneys (7.0 vs. 2.1 nmol; 1.4 vs. 0.42 d), small intestine (2.1 vs. 0.42 nmol; 0.43 vs. 0.084 d), and lungs (3.2 vs. 0.10 nmol; 1.6 vs. 0.021 d) in the LA+RA compared with the LA rats; there were no major differences for eyes, testes, adrenal glands, or remaining carcass. We conclude that RA supplementation of rats with low VA status affects VA metabolism at both the whole-body level and in specific organs. These organs (liver, kidneys, small intestine, and lungs) have the enzymatic capability and an appropriate cell type to store retinyl esters.
    Journal of Nutrition 05/2005; 135(4):746-52. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delta(5)-Desaturase (D5D) catalyzes the Delta(5,6) desaturation of dietary essential fatty acids of the n-6 and n-3 series. By subtraction hybridization of vitamin A (VA)-deficient and control rat liver cDNA libraries, we isolated a 106-bp cDNA fragment that proved to be homologous to human liver D5D cDNA and used it as a probe to analyze rat D5D mRNA and clone the rat full-length cDNA. Delta(5)-Desaturase mRNA was threefold more abundant in liver from VA-deficient rats than in liver from VA-sufficient rats and was expressed dose dependently when dietary VA was varied (VA marginal > control > VA supplemented). Treatment of VA-deficient rats with all-trans-retinoic acid lowered the level of expression of D5D mRNA toward that of VA-sufficient rats. The 3413-bp full-length D5D cDNA cloned from rat liver contains an open reading frame of 447 amino acid residues sharing 92% similarity with its human counterpart. Expression of this cDNA in HEK293T cells incubated with dihomo-gamma-linolenic acid (20:3, n-6) resulted in a significantly increased ratio of the product, arachidonic acid (20:4, n-6), to substrate in cell lipid extracts. Delta(5)-Desaturase mRNA is expressed in relatively high abundance in rat adrenal gland and mammary tissue and moderately in liver, kidney, lung, spleen, thymus, brain, and eye. The regulation of D5D by VA could be important for growth and development, and reproduction, as well as in the control of inflammation.
    Archives of Biochemistry and Biophysics 07/2001; 391(1):8-15. · 3.37 Impact Factor