Yangsik Jeong

Yonsei University Hospital, Sŏul, Seoul, South Korea

Are you Yangsik Jeong?

Claim your profile

Publications (17)105.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Licochalcone (lico) F is a novel synthetic retrochalcone. In this study, we investigated the anti-inflammatory effects of lico F in vitro, and its effects on obesity-induced chronic inflammation, glucose intolerance, and fatty liver in vivo. The inhibitory effects of lico F on TNFα-induced inflammation were investigated using NF-κB luciferase reporter assay and RT-PCR. Diet-induced obese mice were treated orally, once per day, with vehicle or lico F (10 mg/kg/day), for 3 weeks, and blood, liver, and adipose tissues were analyzed. Lico F inhibited TNFα-induced NF-κB activation and mRNA expression of TNFα, COX-2, IL-6, IL-1β, and NOS2. In obese mice, lico F administration significantly alleviated glucose tolerance without changes in body weight gain and food intake. Lico F reduced adipocyte size and macrophage infiltration into white adipose tissue and improved hepatic lesions, by decreasing fat droplets and glycogen deposition. The mRNA expression levels of TNFα, MCP-1, and CD68 in white adipose tissue also decreased markedly. Moreover, lico F enhanced Akt signaling, but reduced p38 MAPK signaling in white adipose tissue. Lico F had anti-inflammatory effects and showed beneficial effects on glucose metabolism, which could be partially caused by activation of the Akt signal pathway and obesity-induced chronic inflammation, probably by downregulating p38 signal pathway. Moreover, lico F could be used as a potential novel therapeutic compound against type 2 diabetes and obesity-induced chronic inflammation without the deleterious effects of body weight gain and fatty liver. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
    Clinical nutrition (Edinburgh, Scotland) 03/2015; DOI:10.1016/j.clnu.2015.03.005 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.
    Cancer biology & therapy 02/2015; DOI:10.1080/15384047.2015.1016660 · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gallic acid [3,4,5-trihydroxybenzoic acid (GA)], a natural phytochemical, is known to have a variety of cellular functions including beneficial effects on metabolic syndromes. However, the molecular mechanism by which GA exerts its beneficial effects is not known. Here we report that GA plays its role through the activation of AMP-activated protein kinase (AMPK) and by regulating mitochondrial function via the activation of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Sirtuin 1 (Sirt1) knockdown significantly blunted GA's effect on PGC1α activation and downstream genes, suggesting a critical role of the AMPK/Sirt1/PGC1α pathway in GA's action. Moreover, diet-induced obese mice treated with GA showed significantly improved glucose and insulin homeostasis. In addition, the administration of GA protected diet-induced body weight gain without a change in food intake. Biochemical analyses revealed a marked activation of AMPK in the liver, muscle, and interscapular brown adipose tissue of the GA-treated mice. Moreover, uncoupling protein 1 together with other genes related to energy expenditure was significantly elevated in the interscapular brown adipose tissue. Taken together, these results indicate that GA plays its beneficial metabolic roles by activating the AMPK/Sirt1/PGC1α pathway and by changing the interscapular brown adipose tissue genes related to thermogenesis. Our study points out that targeting the activation of the AMPK/Sirt1/PGC1α pathway by GA or its derivatives might be a potential therapeutic intervention for insulin resistance in metabolic diseases.
    Endocrinology 10/2014; DOI:10.1210/en.2014-1354 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.
    Biochemical and Biophysical Research Communications 04/2014; 447(3). DOI:10.1016/j.bbrc.2014.04.018 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human induced pluripotent stem (hiPS) cells are an alternative cell source of regenerative medicine for liver disease. Since variations in hepatic differentiation efficacy among hiPS cells exist, it is important to select a hiPS cell line with hepaticdifferentiation propensity. In addition, nuclear receptors (NRs)regulate essential biological processes including differentiation and development.In this study, we identified the hiPS cell line with hepatic differentiation propensity and examined expression levels of 48 NRs during this process. We screened28hiPS cell lines, which are established from various tissues of healthy persons with variousreprogramming methods, using 3 step differentiation method,and examined expression levels of 48 NRs by quantitative real-time PCR during differentiation process in the selected cells. HiPS-RIKEN-2B and HiPS-RIKEN-2F cells have hepatic differentiation propensity. Differentiation propensity toward endoderm was affected by donor origin but not byreprogramming methods or cell type of origins. Expression levels of NRs were closely associated with those of hepatic differentiation markers. Furthermore, expression patterns of NRs were categorized as five patterns. In particular, seven NRssuch as COUP-TF1, RARα, PPARγ, PR, PNR, TLX and GRwere identified as the genes of which expression gradually goes up with differentiation. These findings will be useful for not only elucidating mechanisms of hepatic differentiation of hiPS cells but also cell based therapy for liver diseases.
    Hepatology Research 03/2014; DOI:10.1111/hepr.12329 · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs.
    Biochemical and Biophysical Research Communications 01/2014; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is a major cause of cancer-related death worldwide. It is believed that obesity-related malignancies such as breast, endometrial, colorectal, and kidney carcinomas have lower plasma level and/or tissue expression of adiponectin receptors. However, the association between adiponectin receptors and lung cancer, a non obesity-related malignancy, is still unknown. We evaluated the tissue expression of adiponectin receptor (AdipoR) 1 and AdipoR2 in 83 cases of non-small cell lung carcinoma (NSCLC) and matched non-neoplastic lung tissues by immunohistochemistry and real-time polymerase chain reaction (PCR). Clinicopathological data, including smoking history, smoker's bronchiolitis, emphysema, lymph node metastasis, and T-stage were collected and evaluated. Expression of immunohistochemically stained AdipoR1 and AdipoR2 was observed in all samples of non-neoplastic lung tissues. Both receptors showed higher mRNA expression in non-neoplastic than neoplastic tissues (p < 0.05). In NSCLC tissues, AdipoR1 immunohistochemical expression was not observed in most of patients with squamous cell carcinoma and current smoking history (31/42, p = 0.04 and 25/29, p = 0.003, respectively). Additionally, AdipoR1 mRNA expression was significantly lower in patients with lymph node metastasis (p = 0.05). Meanwhile, AdipoR2 immunohistochemical stain expression was inversely correlated with T-stage (p = 0.05) and AdipoR2 mRNA expression was significantly lower in patients with smoker's bronchiolitis (p = 0.01) and emphysema (p = 0.03). Patients with expression of AdipoR1 had longer overall survival. AdipoR2 expression was not correlated with patients' survival. In conclusion, we suggest that expression of AdipoR1 is indicative of favorable prognosis and may be used as prognostic marker in NSCLC.
    The Tohoku Journal of Experimental Medicine 02/2013; 229(2):153-62. DOI:10.1620/tjem.229.153 · 1.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxysterol binding protein related protein 1S (ORP1S) is a member of a family of sterol transport proteins. Here we present evidence that ORP1S translocates from the cytoplasm to the nucleus in response to sterol binding. The sterols that best promote nuclear import of ORP1S also activate the liver X receptor (LXR) transcription factors and we show that ORP1S binds to LXRs, promotes binding of LXRs to LXR response elements (LXREs) and specifically enhances LXR-dependent transcription via the ME.1 and ME.2 enhancer elements of the apoE gene. We propose that ORP1S is a cytoplasmic sterol sensor, which transports sterols to the nucleus and promotes LXR-dependent gene transcription through select enhancer elements.
    Experimental Cell Research 06/2012; 318(16):2128-42. DOI:10.1016/j.yexcr.2012.06.012 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer-related death. Despite a number of studies that have provided prognostic biomarkers for lung cancer, a paucity of reliable markers and therapeutic targets exist to diagnose and treat this aggressive disease. In this study we investigated the potential of nuclear receptors (NRs), many of which are well-established drug targets, as therapeutic markers in lung cancer. Using quantitative real-time PCR, we analyzed the expression of the 48 members of the NR superfamily in a human panel of 55 normal and lung cancer cell lines. Unsupervised cluster analysis of the NR expression profile segregated normal from tumor cell lines and grouped lung cancers according to type (i.e. small vs. non-small cell lung cancers). Moreover, we found that the NR signature was 79% accurate in diagnosing lung cancer incidence in smokers (n = 129). Finally, the evaluation of a subset of NRs (androgen receptor, estrogen receptor, vitamin D receptor, and peroxisome proliferator-activated receptor-γ) demonstrated the therapeutic potential of using NR expression to predict ligand-dependent growth responses in individual lung cancer cells. Preclinical evaluation of one of these receptors (peroxisome proliferator activated receptor-γ) in mouse xenografts confirmed that ligand-dependent inhibitory growth responses in lung cancer can be predicted based on a tumor's receptor expression status. Taken together, this study establishes NRs as theragnostic markers for predicting lung cancer incidence and further strengthens their potential as therapeutic targets for individualized treatment.
    Molecular Endocrinology 06/2012; 26(8):1443-54. DOI:10.1210/me.2011-1382 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver X receptor α (LXRα) is a nuclear receptor that is involved in regulation of lipid metabolism, cellular proliferation and apoptosis, and immunity. In this report, we characterize three human LXRα isoforms with variation in the ligand-binding domain (LBD). While examining the expression of LXRα3, which lacks 60 amino acids within the LBD, we identified two novel transcripts that encode LXRα-LBD variants (LXRα4 and LXRα5). LXRα4 has an insertion of 64 amino acids in helix 4/5, and LXRα5 lacks the C-terminal helices 7 to 12 due to a termination codon in an additional exon that encodes an intron in the LXRα1 mRNA. LXRα3, LXRα4, and LXRα5 were expressed at lower levels compared with LXRα1 in many human tissues and cell lines. We also observed weak expression of LXRα3 and LXRα4 in several tissues of mice. LXR ligand treatment induced differential regulation of LXRα isoform mRNA expression in a cell type-dependent manner. Whereas LXRα3 had no effect, LXRα4 has weak transactivation, retinoid X receptor (RXR) heterodimerization, and coactivator recruitment activities. LXRα5 interacted with a corepressor in a ligand-independent manner and inhibited LXRα1 transactivation and target gene expression when overexpressed. Combination of LXRα5 cotransfection and LXRα antagonist treatment produced additive effects on the inhibition of ligand-dependent LXRα1 activation. We constructed structural models of the LXRα4-LBD and its complexes with ligand, RXR-LBD, and coactivator peptide. The models showed that the insertion in the LBD can be predicted to disrupt RXR heterodimerization. Regulation of LXRα pre-mRNA splicing may be involved in the pathogenesis of LXRα-related diseases.
    Molecular pharmacology 03/2012; 81(6):800-10. DOI:10.1124/mol.111.077206 · 4.12 Impact Factor
  • Cancer Research 04/2011; 71(8 Supplement):354-354. DOI:10.1158/1538-7445.AM2011-354 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of prognostic tumor biomarkers that also would have potential as therapeutic targets, particularly in patients with early stage disease, has been a long sought-after goal in the management and treatment of lung cancer. The nuclear receptor (NR) superfamily, which is composed of 48 transcription factors that govern complex physiologic and pathophysiologic processes, could represent a unique subset of these biomarkers. In fact, many members of this family are the targets of already identified selective receptor modulators, providing a direct link between individual tumor NR quantitation and selection of therapy. The goal of this study, which begins this overall strategy, was to investigate the association between mRNA expression of the NR superfamily and the clinical outcome for patients with lung cancer, and to test whether a tumor NR gene signature provided useful information (over available clinical data) for patients with lung cancer. Using quantitative real-time PCR to study NR expression in 30 microdissected non-small-cell lung cancers (NSCLCs) and their pair-matched normal lung epithelium, we found great variability in NR expression among patients' tumor and non-involved lung epithelium, found a strong association between NR expression and clinical outcome, and identified an NR gene signature from both normal and tumor tissues that predicted patient survival time and disease recurrence. The NR signature derived from the initial 30 NSCLC samples was validated in two independent microarray datasets derived from 442 and 117 resected lung adenocarcinomas. The NR gene signature was also validated in 130 squamous cell carcinomas. The prognostic signature in tumors could be distilled to expression of two NRs, short heterodimer partner and progesterone receptor, as single gene predictors of NSCLC patient survival time, including for patients with stage I disease. Of equal interest, the studies of microdissected histologically normal epithelium and matched tumors identified expression in normal (but not tumor) epithelium of NGFIB3 and mineralocorticoid receptor as single gene predictors of good prognosis. NR expression is strongly associated with clinical outcomes for patients with lung cancer, and this expression profile provides a unique prognostic signature for lung cancer patient survival time, particularly for those with early stage disease. This study highlights the potential use of NRs as a rational set of therapeutically tractable genes as theragnostic biomarkers, and specifically identifies short heterodimer partner and progesterone receptor in tumors, and NGFIB3 and MR in non-neoplastic lung epithelium, for future detailed translational study in lung cancer. Please see later in the article for the Editors' Summary.
    PLoS Medicine 12/2010; 7(12):e1000378. DOI:10.1371/journal.pmed.1000378 · 14.00 Impact Factor
  • Source
    Yangsik Jeong, David J Mangelsdorf
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells include a diverse number of toti-, pluri-, and multi-potent cells that play important roles in cellular genesis and differentiation, tissue development, and organogenesis. Genetic regulation involving various transcription factors results in the self-renewal and differentiation properties of stem cells. The nuclear receptor (NR) superfamily is composed of 48 ligand-activated transcription factors involved in diverse physiological functions such as metabolism, development, and reproduction. Increasing evidence shows that certain NRs function in regulating stemness or differentiation of embryonic stem (ES) cells and tissue-specific adult stem cells. Here, we review the role of the NR superfamily in various aspects of stem cell biology, including their regulation of stemness, forward- and trans-differentiation events; reprogramming of terminally differentiated cells; and interspecies differences. These studies provide insights into the therapeutic potential of the NR superfamily in stem cell therapy and in treating stem cell-associated diseases (e.g., cancer stem cell).
    Experimental and Molecular Medicine 09/2009; 41(8):525-37. DOI:10.3858/emm.2009.41.8.091 · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear receptors (NRs) regulate gene expression in essential biological processes including differentiation and development. Here we report the systematic profiling of NRs in human and mouse embryonic stem cell (ESC) lines and during their early differentiation into embryoid bodies. Expression of the 48 human and mouse NRs was assessed by quantitative real-time PCR. In general, expression of NRs between the two human cell lines was highly concordant, whereas in contrast, expression of NRs between human and mouse ESCs differed significantly. In particular, a number of NRs that have been implicated previously as crucial regulators of mouse ESC biology, including ERRbeta, DAX-1, and LRH-1, exhibited diametric patterns of expression, suggesting they may have distinct species-specific functions. Taken together, these results highlight the complexity of the transcriptional hierarchy that exists between species and governs early development. These data should provide a unique resource for further exploration of the species-specific roles of NRs in ESC self-renewal and differentiation.
    Molecular Endocrinology 03/2009; 23(5):724-33. DOI:10.1210/me.2008-0465 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear receptors liver X receptor (LXR) alpha and LXRbeta serve as oxysterol receptors and play an important role in the regulation of lipid metabolism. We investigated the potential effects of LXRs on pathways of colon carcinogenesis and found that LXR activation suppresses the transactivation activity of beta-catenin, a key molecule in Wnt signaling. LXRalpha and LXRbeta inhibited beta-catenin transactivation of T cell factor-mediated transcription in a ligand-dependent manner. LXR activation suppressed an oncogenic beta-catenin, which has phosphorylation site mutations, and did not change beta-catenin protein expression in cells. In contrast, beta-catenin enhanced LXR transactivation activity. Nuclear LXRs and beta-catenin were coimmunoprecipitated in colon cancer HCT116 cells, and in vitro experiments showed that LXRs bind directly to the Armadillo repeat region of beta-catenin in a ligand-independent manner. LXR ligand decreased mRNA expression of beta-catenin targets, MYC, MMP7 and BMP4, and recruited LXRs to MYC and MMP7 promoters. Transfection of a dominant negative LXR to HCT116 cells and experiments using LXR-null cells showed the involvement of cellular LXRs in beta-catenin suppression and proliferation inhibition. The results show lipid-sensing receptor LXRs regulate the beta-catenin activity and cellular proliferation.
    Biochemical pharmacology 11/2008; 77(2):186-95. DOI:10.1016/j.bcp.2008.10.007 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An abstract is unavailable. This article is available as HTML full text and PDF.
    Journal of Thoracic Oncology 07/2007; 2(8):S178-S179. DOI:10.1097/01.JTO.0000282957.22684.90 · 5.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In multicellular organisms, the ability to regulate reproduction, development, and nutrient utilization coincided with the evolution of nuclear receptors (NRs), transcription factors that utilize lipophilic ligands to mediate their function. Studying the expression profile of NRs offers a simple, powerful way to obtain highly relational information about their physiologic functions as individual proteins and as a superfamily. We surveyed the expression of all 49 mouse NR mRNAs in 39 tissues, representing diverse anatomical systems. The resulting data set uncovers several NR clades whose patterns of expression indicate their ability to coordinate the transcriptional programs necessary to affect distinct physiologic pathways. Remarkably, this regulatory network divides along the following two physiologic paradigms: (1) reproduction, development, and growth and (2) nutrient uptake, metabolism, and excretion. These data reveal a hierarchical transcriptional circuitry that extends beyond individual tissues to form a meganetwork governing physiology on an organismal scale.
    Cell 09/2006; 126(4):789-99. DOI:10.1016/j.cell.2006.06.049 · 33.12 Impact Factor

Publication Stats

620 Citations
105.48 Total Impact Points

Institutions

  • 2015
    • Yonsei University Hospital
      Sŏul, Seoul, South Korea
  • 2012–2014
    • Yonsei University
      • Department of Biochemistry
      Sŏul, Seoul, South Korea
  • 2006–2012
    • University of Texas Southwestern Medical Center
      • • Department of Cell Biology
      • • Department of Pharmacology
      Dallas, Texas, United States
  • 2009
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States