Mathieu Porez

French National Centre for Scientific Research, Lutetia Parisorum, Île-de-France, France

Are you Mathieu Porez?

Claim your profile

Publications (23)14.14 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper addresses the dimensional synthesis of an adaptive mechanism of contact points ie a leg mechanism of a piping inspection robot operating in an irradiated area as a nuclear power plant. This studied mechanism is the leading part of the robot sub-system responsible of the locomotion. Firstly, three architectures are chosen from the literature and their properties are described. Then, a method using a multi-objective optimization is proposed to determine the best architecture and the optimal geometric parameters of a leg taking into account environmental and design constraints. In this context, the objective functions are the minimization of the mechanism size and the maximization of the transmission force factor. Representations of the Pareto front versus the objective functions and the design parameters are given. Finally, the CAD model of several solutions located on the Pareto front are presented and discussed.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents an extension of Lighthill’s large-amplitude elongated-body theory of fish locomotion which enables the effects of an external weakly non-uniform potential flow to be taken into account. To do so, the body is modelled as a Kirchhoff beam, made up of elliptical cross-sections whose size may vary along the body, undergoing prescribed deformations consisting of yaw and pitch bending. The fluid velocity potential is decomposed into two parts corresponding to the unperturbed potential flow, which is assumed to be known, and to the perturbation flow. The Laplace equation and the corresponding Neumann’s boundary conditions governing the perturbation velocity potential are expressed in terms of curvilinear coordinates which follow the body during its motion, thus allowing the boundary of the body to be considered as a fixed surface. Equations are simplified according to the slenderness of the body and the weakness of the non-uniformity of the unperturbed flow. These simplifications allow the pressure acting on the body to be determined analytically using the classical Bernoulli equation, which is then integrated over the body. The model is finally used to investigate the passive and the active swimming of a fish in a Kármán vortex street.
    Journal of Fluid Mechanics 02/2013; · 2.29 Impact Factor
  • IEEE transactions on robotics. 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports the first results from a program of work aimed at developing a swimming robot equipped with electric sense. After having presented the principles of a bioinspired electric sensor that is now working, we will build the models for electrolocation of objects that are suited to this kind of sensor. The produced models are in a compact analytical form in order to be tractable on the onboard computers of the future robot. These models are tested by comparing them with numerical simulations based on the boundary elements method. The results demonstrate the feasibility of the approach and its compatibility with online objects electrolocation, i.e., another parallel program of ours.
    IEEE Transactions on Robotics 01/2012; 28(2):492-505. · 2.57 Impact Factor
  • A. Belkhiri, M. Porez, F. Boyer
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a hybrid dynamic model of a 3-D aerial insect-like robot. The soft-bodied insect wings modeling is based on a continuous version of the Newton-Euler dynamics where the leading edge is treated as a continuous Cosserat beam. These wings are connected to an insect's rigid thorax using a discrete recursive algorithm based on the Newton-Euler equations. Here we detail the inverse dynamic model algorithm. This version of the dynamic model solves the following two problems involved in any locomotion task: 1°) it enables the net motion of a reference body to be computed from the known data of internal motions (strain fields); 2°) it gives the internal torques required to impose these internal (strain fields) motions. The essential fluid effects have been taken into account using a simplified analytical hovering flight aerodynamic model. To facilitate the analysis of numerical results, a visualization tool is developed (see video available at [1]).
    Robotics and Biomimetics (ROBIO), 2012 IEEE International Conference on; 01/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the context of underwater robotics, positioning and coordination of mobile agents can prove a challenging problem. To address this issue, we propose the use of electric sensing, with a technique inspired by weakly electric fishes. In particular, the approach relies on one or several of the agents applying an electric field to their environment. Using electric measures, others agents are able to reconstruct their relative position with respect to the emitter, over a range that is function of the geometry of the emitting agent and of the power applied to the environment. Efficacy of the technique is illustrated using a number of numerical examples. The approach is shown to allow coordination of unmanned underwater vehicles, including that of bio-inspired swimming robotic platforms.
    Proceedings - IEEE International Conference on Robotics and Automation 01/2012;
  • Frédéric Boyer, Shaukat Ali, Mathieu Porez
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we present a unified dynamic modeling approach of (elongated body) continuum robots. The robot is modeled as a geometrically exact beam continuously actuated through an active strain law. Once included in the geometric mechanics of locomotion, the approach applies to any hyperredundant or continuous robot that is devoted to manipulation and/or locomotion. Furthermore, by the exploitation of the nature of the resulting model of being a continuous version of the Newton–Euler model of discrete robots, an algorithm is proposed that is capable of computing the internal control torques (and/or forces), as well as the rigid net motions of the robot. In general, this algorithm requires a model of the external forces (responsible for the self-propulsion), but we will see how such a model can be replaced by a kinematic model of a combination of contacts that are related to terrestrial locomotion. Finally, in this case, which we name “kinematic locomotion,” the algorithm is illustrated through many examples directly related to elongated body animals, such as snakes, worms, or caterpillars, and their associated biomimetic artifacts.
    IEEE Transactions on Robotics 01/2012; 28(2):303-317. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analytical model of a sensor for the navigation of underwater vehicles by the electric sense. This model is inspired from the electroreception structure of the electric fish. In our model, that we call the poly-spherical model (PSM), the sensor is composed of n spherical electrodes. Some electrodes play the role of current-emitters whereas others play the role of current-receivers. By imposing values of the electrical potential on each electrode we create an electric field in the vicinity of the sensor. The region where the electric field is created is considered as the bubble of perception of the sensor. Each object that enters this bubble is electrically polarized and creates in return a perturbation. This perturbation induces a variation of the measured current by the sensor. The model is tested on objects for which the expression of the polarizability is known. A unique off-line calibration of the poly-spherical model permits to predict the measured current of a real immersed sensor in an aquarium. Comparisons in a basic scene between the predicted current given by the poly-spherical model and the measured current given by our test bed show a very good agreement, which confirms the interest of using such fast analytical models for the purpose of navigation.
    Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference on; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The paper deals with the modeling of a fish- like robot equipped with the electric sense, suited to study sensorimotor loops. The proposed multi-physics model merges a swimming dynamic model of a fish-like robot with an electric model of an embedded electrolocation sensor. Based on a TCP- IP and threaded framework, the resulting simulator works in real time. After presenting the modeling aspects of this work, this article focuses on two numerical studies. In the first, the in- teractions between body deformations and perception variables are studied and a current correction process is proposed. In the second study, an electric exteroceptive feedback loop based on a direct current measurement method is designed and tested for obstacle avoidance.
    IROS 2011; 01/2011
  • Shaukat Ali, Frédéric Boyer, Mathieu Porez
    Procedia Computer Science. 01/2011; 7:317 - 319.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The paper deals with the modeling of a fish-like robot equipped with the electric sense, suited to study sensorimotor loops. The proposed multi-physics model merges a swimming dynamic model of a fish-like robot with an electric model of an embedded electrolocation sensor. Based on a TCP-IP and threaded framework, the resulting simulator works in real time. After presenting the modeling aspects of this work, this article focuses on two numerical studies. In the first, the interactions between body deformations and perception variables are studied and a current correction process is proposed. In the second study, an electric exteroceptive feedback loop based on a direct current measurement method is designed and tested for obstacle avoidance.
    Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on; 01/2011
  • Source
    Frédéric Boyer, Shaukat Ali, Mathieu Porez
    [Show abstract] [Hide abstract]
    ABSTRACT: This article presents a unified dynamic modeling approach of continuum robots. The robot is modeled as a geometrically exact beam continuously actuated through an active strain law. Once included into the geometric mechanics of locomotion, the approach applies to any hyper-redundant or continuous robot devoted to manipulation and/or locomotion. Furthermore, exploiting the nature of the resulting models as being a continuous version of the Newton-Euler models of discrete robots, an algorithm is proposed which is capable of computing the internal control torques (and/or forces) as well as the rigid overall motions of the locomotor robot. The efficiency of the approach is finally illustrated through many examples directly related to the terrestrial locomotion of elongated animals as snakes, worms or caterpillars and their associated bio-mimetic artifacts.
    01/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In bio-inspired robotics, use of a Central Pattern Generator (CPG) to coordinate actuation is fairly common. The gait achieved depends on a number of CPG parameters, which can be adjusted to control the robot's motion. This paper presents an output feedback motion control framework, addressing issues encountered when dealing with this type of control problem, including partial state measurements and system uncertainty. Efficacy of the presented approach is illustrated by results of numerical simulations in the case of a swimming robot.
    01/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this article, we describe a dynamic model of the three-dimensional eel swimming. This model is analytical and suited to the online control of eel-like robots. The proposed solution is based on the Large Amplitude Elongated Body Theory of Lighthill and a framework recently presented in Boyer et al. (IEEE Trans. Robot. 22:763–775, 2006) for the dynamic modeling of hyper-redundant robots. This framework was named “macro-continuous” since, at this macroscopic scale, the robot (or the animal) is considered as a Cosserat beam internally (and continuously) actuated. This article introduces new results in two directions. Firstly, it extends the Lighthill theory to the case of a self-propelled body swimming in three dimensions, while including a model of the internal control torque. Secondly, this generalization of the Lighthill model is achieved due to a new set of equations, which are also derived in this article. These equations generalize the Poincaré equations of a Cosserat beam to an open system containing a fluid stratified around the slender beam.
    Journal of Nonlinear Science 01/2010; 20:47-79. · 1.57 Impact Factor
  • Source
    Frederic Boyer, Mathieu Porez, Alban Leroyer
    [Show abstract] [Hide abstract]
    ABSTRACT: In this article, we propose a dynamic model of the three-dimensional eel swim. This model is analytical and suited to the on-line control of eel-like robots. The proposed solution is based on the Large Amplitude Elongated Body Theory of Lighthill and a working frame recently proposed in [1] for the dynamic modeling of hyper-redundant robots. This working frame was named "macro-continuous" since at this macroscopic scale, the robot (or the animal) is considered as a Cosserat beam internally (and continuously) actuated. This article proposes new results in two directions. Firstly, it achieves an extension of the Lighthill theory to the case of a self propelled body swimming in three dimensions, while including a model of the internal control torque. Secondly, this generalization of the Lighthill model is achieved due to a new set of equations which is also derived in this article. These equations generalize the Poincaré equations of a Cosserat beam to the case of an open system containing a uid stratied around the slender beam.
    01/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a reduced mean model of a three-dimensional Eel-like robot. Such a robot is under construction in the context of a national French robotic project. This model is based on mechanical considerations as well as on our experience with an existing 3D continuous model of the target prototype. Identification and validation of the dynamic model are presented here.
    Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on; 03/2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a dynamic model of the swim of elongated fish suited to the online control of biomimetic eel-like robots. The approach can be considered as an extension of the original reactive ldquolarge elongated body theoryrdquo of Lighthill to the 3-D self-propulsion to which a resistive empirical model has been added. While all the mathematical fundamentals have been detailed by Boyer . (http://www.irccyn.ec-nantes.fr/hebergement/Publications/2007/3721.pdf, 2007), this paper essentially focuses on the numerical validation and calibration of the model and the study of swimming gaits. The proposed model is coupled to an algorithm allowing us to compute the motion of the fish head and the field of internal control torque from the knowledge of the imposed internal strain fields. Based on the Newton-Euler formalism of robot dynamics, this algorithm works faster than real time. As far as precision is concerned, many tests obtained with several planar and 3-D gaits are reported and compared (in the planar case) with a Navier-Stokes solver, which, until today have been devoted to the planar swim. The comparisons obtained are very encouraging since in all the cases we tested, the differences between our simplified and reference simulations do not exceed 10%.
    IEEE Transactions on Robotics 01/2009; · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, a multi-variable feedback design for the 3D movement of an eel-like robot is presented. Such a robot is under construction in the context of a national French robotic project. The proposed feedback enables the tracking of a desired 3D position of the eelpsilas head as well as the stabilization of the rolling angle. The control design is based on a recently developed reduced model that have been validated using a 3D complete continuous model described in [3]. Several scenarios are proposed to assess the efficiency of the proposed feedback law.
    Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on; 10/2008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper relates recent advances in the design of feedback laws for the 3D movement of an Eel-like robot. Such a robot is under construction in the context of a national French robotic project. The proposed feedback enables the tracking of a desired 3D position of the Eel head as well as the stabilization of the rolling angle. A velocity controller is also proposed. The controller is tested on a recently developed complete 3D model in order to assess its efficiency in tackling 3D manoeuvres.
    Robotics and Automation, 2007 IEEE International Conference on; 05/2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper relates recent advances in the design of feedback laws for the 3D movement of an Eel-like robot. Such a robot is under construction in the context of a national French robotic project. The proposed feedback enables the tracking of a desired 3D position of the Eel head as well as the stabilization of the rolling angle. A velocity controller is also proposed. The controller is tested on a recently developed complete 3D model in order to assess its efficiency in tackling 3D manoeuvres.
    01/2007;