M. Spaans

University of Groningen, Groningen, Groningen, Netherlands

Are you M. Spaans?

Claim your profile

Publications (199)525.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present FIR-CO luminosity relations ($\log L_{\rm FIR} = \alpha \log L'_{\rm CO} + \beta$) for the full CO rotational ladder from J=1-0 to J=13-12 for 62 local (z < 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 (sub)-millimeter selected dusty star forming galaxies from the literature with robust CO observations. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations towards the high-IR-luminosity end while also significantly increasing the small amount of mid-/high-J CO line data available prior to Herschel. This new data-set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations ($\alpha \sim 1$) for J=1-0 up to J=5-4, with a nearly constant normalisation ($\beta \sim 2$). This is expected from the (also) linear FIR-(molecular line) relations found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However from J=6-5 and up to J=13-12 we find an increasingly sub-linear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (~100K) and dense ($>10^4{\rm cm^{-3}}$) gas component whose thermal state is unlikely to be maintained by star formation powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions (SLEDs), which remain highly excited from J=6-5 up to J=13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constants
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiative feedback from populations II stars played a vital role in early structure formation. Particularly, photons below the Lyman limit can escape the star forming regions and produce a background ultraviolet (UV) flux which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photo-detachment of $\rm H^{-}$. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times $\rm 10^{7}$~M${_\odot}$. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of $\rm J_{21}$. We further make use of sink particles to follow the evolution for 10,000 years after reaching the maximum refinement level. No vigorous fragmentation is observed in UV illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 100-10, 000 solar mass protostars are formed when halos are irradiated by $\rm J_{21}=10-500$ at $\rm z>10$ and suggest a strong relation between the strength of UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about $\rm 0.01-0.1$ M$_{\odot}$/yr are observed by the end of our simulations. The resulting massive stars are the potential cradles for the formation of intermediate mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the fueling and the feedback of star formation and nuclear activity in NGC1068, a nearby (D=14Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We have used ALMA to map the emission of a set of dense molecular gas tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3) and CS(7-6)) and their underlying continuum emission in the central r ~ 2kpc of NGC1068 with spatial resolutions ~ 0.3"-0.5" (~ 20-35pc). Molecular line and dust continuum emissions are detected from a r ~ 200pc off-centered circumnuclear disk (CND), from the 2.6kpc-diameter bar region, and from the r ~ 1.3kpc starburst (SB) ring. Most of the emission in HCO+, HCN and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the AGN, betraying ongoing feedback. The gas kinematics from r ~ 50pc out to r ~ 400pc reveal a massive (M_mol ~ 2.7 (+0.9, -1.2) x 10^7 Msun) outflow in all molecular tracers. The tight correlation between the ionized gas outflow, the radio jet and the occurrence of outward motions in the disk suggests that the outflow is AGN-driven. The outflow rate estimated in the CND, dM/dt ~ 63 (+21, -37) Msun yr^-1, is an order of magnitude higher than the star formation rate at these radii, confirming that the outflow is AGN-driven. The power of the AGN is able to account for the estimated momentum and kinetic luminosity of the outflow. The CND mass load rate of the CND outflow implies a very short gas depletion time scale of <=1 Myr.
    05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on two regularly rotating galaxies at redshift z 2, using high-resolution spectra of the bright [C II] 158 μm emission line from the HIFI instrument on the Herschel Space Observatory. Both SDSS090122.37+181432.3 ("S0901") and SDSSJ120602.09+514229.5 ("the Clone") are strongly lensed and show the double-horned line profile that is typical of rotating gas disks. Using a parametric disk model to fit the emission line profiles, we find that S0901 has a rotation speed of vsin (i) 120 ± 7 km s–1 and a gas velocity dispersion of σg < 23 km s–1 (1σ). The best-fitting model for the Clone is a rotationally supported disk having vsin (i) 79 ± 11 km s–1 and σg 4 km s–1 (1σ). However, the Clone is also consistent with a family of dispersion-dominated models having σg = 92 ± 20 km s–1. Our results showcase the potential of the [C II] line as a kinematic probe of high-redshift galaxy dynamics: [C II] is bright, accessible to heterodyne receivers with exquisite velocity resolution, and traces dense star-forming interstellar gas. Future [C II] line observations with ALMA would offer the further advantage of spatial resolution, allowing a clearer separation between rotation and velocity dispersion.
    The Astrophysical Journal 04/2014; 787(1):8. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of metal free gas to cool by molecular hydrogen in primordial halos is strongly associated with the strength of ultraviolet (UV) flux produced by the stellar populations in the first galaxies. Depending on the stellar spectrum, these UV photons can either dissociate $\rm H_{2}$ molecules directly or indirectly by photo-detachment of $\rm H^{-}$ as the latter provides the main pathway for $\rm H_{2}$ formation in the early universe. In this study, we aim to determine the critical strength of the UV flux above which the formation of molecular hydrogen remains suppressed. We presume that such flux is emitted by PopII stars implying atmospheric temperatures of $\rm 10^{4}$ K. We performed three-dimensional cosmological simulations for five distinct halos and varied the strength of the UV flux below the Lyman limit in units of $\rm J_{21}$. Our findings show that the value of $\rm J_{21}^{crit}$ varies from halo to halo and is sensitive to the local thermal conditions of the gas. For the simulated halos it varies from 400-700 with the exception of one halo where $\rm J_{21}^{crit} \geq 1500$. This has important implications for the formation of direct collapse black holes and their estimated population at z > 6. It reduces the number density of direct collapse black holes by almost three orders of magnitude compared to the previous estimates.
    04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of metal free gas to cool by molecular hydrogen in primordial halos is strongly associated with the strength of ultraviolet (UV) flux produced by the stellar populations in the first galaxies. Depending on the stellar spectrum, these UV photons can either dissociate $\rm H_{2}$ molecules directly or indirectly by photo-detachment of $\rm H^{-}$ as the latter provides the main pathway for $\rm H_{2}$ formation in the early universe. In this study, we aim to determine the critical strength of the UV flux above which the formation of molecular hydrogen remains suppressed. We presume that such flux is emitted by PopII stars implying atmospheric temperatures of $\rm 10^{4}$ K. We performed three-dimensional cosmological simulations for five distinct halos and varied the strength of the UV flux below the Lyman limit in units of $\rm J_{21}$. Our findings show that the value of $\rm J_{21}^{crit}$ varies from halo to halo and is sensitive to the local thermal conditions of the gas. For the simulated halos it varies from 400-700 with the exception of one halo where $\rm J_{21}^{crit} \geq 1500$. This has important implications for the formation of direct collapse black holes and their estimated population at z > 6. It reduces the number density of direct collapse black holes by almost three orders of magnitude compared to the previous estimates.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CO observations in active galactic nuclei and star-bursts reveal high kinetic temperatures. Those environments are thought to be very turbulent due to dynamic phenomena such as outflows and high supernova rates. We investigate the effect of mechanical heating (MH) on atomic fine-structure and molecular lines, and their ratios. We use those ratios as a diagnostic to constrain the amount of MH in an object and also study its significance on estimating the H2 mass. Equilibrium PDRs models were used to compute the thermal and chemical balance for the clouds. The equilibria were solved for numerically using the optimized version of the Leiden PDR-XDR code. Large velocity gradient calculations were done as post-processing on the output of the PDR models using RADEX. High-J CO line ratios are very sensitive to MH. Emission becomes at least one order of magnitude brighter in clouds with n~10^5~cm^-3 and a star formation rate of 1 Solar Mass per year (corresponding to a MH rate of 2 * 10^-19 erg cm^-3 s^-1). Emission of low-J CO lines is not as sensitive to MH, but they do become brighter in response to MH. Generally, for all of the lines we considered, MH increases excitation temperatures and decreases the optical depth at the line centre. Hence line ratios are also affected, strongly in some cases. Ratios involving HCN are a good diagnostic for MH, such as HCN(1-0)/CO(1-0) and HCN(1-0)/HCO^+(1-0). Both ratios increase by a factor 3 or more for a MH equivalent to > 5 percent of the surface heating, as opposed to pure PDRs. The first major conclusion is that low-J to high-J intensity ratios will yield a good estimate of the MH rate (as opposed to only low-J ratios). The second one is that the MH rate should be taken into account when determining A_V or equivalently N_H, and consequently the cloud mass. Ignoring MH will also lead to large errors in density and radiation field estimates.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report Plateau de Bure Interferometer (PdBI) 1.1 mm continuum imaging towards two extremely red H-[4.5]>4 (AB) galaxies at z>3, which we have previously discovered making use of Spitzer SEDS and Hubble Space Telescope (HST) CANDELS ultra-deep images of the UDS field. One of our objects is detected on the PdBI map with a 4.3 sigma significance, corresponding to Snu(1.1mm)=(0.78 +/- 0.18) mJy. By combining this detection with the Spitzer 8 and 24 micron photometry for this source, and SCUBA2 flux density upper limits, we infer that this galaxy is a composite active galactic nucleus (AGN)/star-forming system. The infrared (IR)-derived star formation rate is SFR~(200 +/- 100) Msun/yr, which implies that this galaxy is a higher-redshift analogue of the ordinary ultra-luminous infrared galaxies (ULIRGs) more commonly found at z~2-3. In the field of the other target, we find a tentative 3.1 sigma detection on the PdBI 1.1 mm map, but 3.7 arcsec away of our target position, so it likely corresponds to a different object. In spite of the lower significance, the PdBI detection is supported by a close SCUBA2 3.3 sigma detection. No counterpart is found on either the deep SEDS or CANDELS maps, so, if real, the PdBI source could be similar in nature to the sub-millimetre source GN10. We conclude that the analysis of ultra-deep near- and mid-IR images offers an efficient, alternative route to discover new sites of powerful star formation activity at high redshifts.
    The Astrophysical Journal 03/2014; 788(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection at 850um of the central source in SSA22-LAB1, the archetypal Lyman-alpha Blob (LAB), a 100kpc-scale radio-quiet emission-line nebula at z=3.1. The flux density of the source, $S_{850}=4.6\pm1.1$mJy implies the presence of a galaxy, or group of galaxies, with a total luminosity of $L_{\rm IR}\approx10^{12}L_\odot$. The position of an active source at the center of a ~50kpc-radius ring of linearly polarized Ly-alpha emission detected by Hayes et al. (2011) suggests that the central source is leaking Ly-alpha photons preferentially in the plane of the sky, which undergo scattering in HI clouds at large galactocentric radius. The Ly-alpha morphology around the submillimeter detection is reminiscent of biconical outflow, and the average Ly-alpha line profiles of the two `lobes' are dominated by a red peak, expected for a resonant line emerging from a medium with a bulk velocity gradient that is outflowing relative to the line center. Taken together, these observations provide compelling evidence that the central active galaxy (or galaxies) is responsible for a large fraction of the extended Ly-alpha emission and morphology. Less clear is the history of the cold gas in the circumgalactic medium being traced by Ly-alpha: is it mainly pristine material accreting into the halo that has not yet been processed through an interstellar medium (ISM), now being blown back as it encounters an outflow, or does it mainly comprise gas that has been swept-up within the ISM and expelled from the galaxy?
    02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius, and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial to provide a reliable disk structure for the interpretation of dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. We aim to study the thermal properties of the disk in the oxygen line emission region, and to investigate the relative importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070 Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel Open Time Key Program GASPS (GAS in Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This is in contrast with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict, and/or that other disk structure aspects that were left unchanged in our models are important. ..abridged..
    02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present spectrally resolved Herschel/HIFI observations of the young multiple system T Tau in atomic and molecular lines. While CO, H2O, [C II], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km/s with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R_out = 110 (+10, -20) AU) and its inclination (i = 25 \pm 5 degree). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.
    01/2014; 783(2).
  • Source
    S. Hocuk, S. Cazaux, M. Spaans
    [Show abstract] [Hide abstract]
    ABSTRACT: Atoms and molecules, and in particular CO, are important coolants during the evolution of interstellar star-forming gas clouds. The presence of dust grains, which allow many chemical reactions to occur on their surfaces, strongly impacts the chemical composition of a cloud. At low temperatures, dust grains can lock-up species from the gas phase which freeze out and form ices. In this sense, dust can deplete important coolants. Our aim is to understand the effects of freeze-out on the thermal balance and the evolution of a gravitationally bound molecular cloud. For this purpose, we perform 3D hydrodynamical simulations with the adaptive mesh code FLASH. We simulate a gravitationally unstable cloud under two different conditions, with and without grain surface chemistry. We let the cloud evolve until one free-fall time is reached and track the thermal evolution and the abundances of species during this time. We see that at a number density of 10$^4$ cm$^{-3}$ most of the CO molecules are frozen on dust grains in the run with grain surface chemistry, thereby depriving the most important coolant. As a consequence, we find that the temperature of the gas rises up to $\sim$25 K. The temperature drops once again due to gas-grain collisional cooling when the density reaches a few$\times$10$^4$ cm$^{-3}$. We conclude that grain surface chemistry not only affects the chemical abundances in the gas phase, but also leaves a distinct imprint in the thermal evolution that impacts the fragmentation of a star-forming cloud. As a final step, we present the equation of state of a collapsing molecular cloud that has grain surface chemistry included.
    Monthly Notices of the Royal Astronomical Society 10/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine a semi-analytic model of galaxy formation, which tracks atomic and molecular phases of cold gas, with a three-dimensional radiative-transfer and line tracing code to study the sub-mm emission from several atomic and molecular species (CO, HCN, C, C+, [OI]) in galaxies. We aim to understand if the physics that drives the formation of stars at the epoch of peak star formation in the Universe is similar to or different from that in local galaxies. We find that normal star-forming galaxies at high redshift have much higher CO-excitation peaks than their local counterparts, higher HCN/CO ratios and that CO cooling predominantly takes place through molecules with higher excitation levels. We find an increase in the ratio between [OI] and [CII] in typical star-forming galaxies at z = 1.2 and z = 2.0 with respect to counterparts at z = 0. All our model results suggest that typical star-forming galaxies at high redshift consist of much denser and warmer star-forming clouds than their local counterparts and form their stars under significantly different ISM conditions. Galaxies belonging to the tail of the SF activity peak of the Universe (z = 1.2) are already less dense and cooler than counterparts during the actual peak of SF activity (z = 2.0). We use our results to discuss how future ALMA surveys can best confront our predictions and constrain models of galaxy formation.
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At the distance of 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. We observed the fine-structure lines of OI at 63 and 145 micron and the CII line at 157 micron with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 micron, and 12CO fundamental ro-vibrational and pure rotational J=3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. The models suggest that the oxygen lines are emitted from the inner disk around HD141569A, whereas the [CII] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of 2.1E-7 MSun and from grains with a radius of up to 1 cm of 4.9E-6 MSun. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2E-11 and 1..4E-10 MSun assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3E-7) by two to three orders of magnitude. The disk around HD141569A is less massive in gas (2.5 to 4.9E-4 MSun or 67 to 164 MEarth) and has a flat opening angle (<10%). [abridged]
    Astronomy and Astrophysics 09/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the multi-wavelength properties of a sample of 450-\mu m selected sources from the SCUBA-2 Cosmology Legacy Survey (S2CLS). A total of 69 sources were identified above 4\sigma\ in deep SCUBA-2 450-\mu m observations overlapping the UDS and COSMOS fields and covering 210 sq. arcmin to a typical depth of \sigma 450=1.5 mJy. Reliable cross identification are found for 58 sources (84 per cent) in Spitzer and Hubble Space Telescope WFC3/IR data. The photometric redshift distribution (dN/dz) of 450\mu m-selected sources is presented, showing a broad peak in the redshift range 1<z<3, and a median of z=1.4. Combining the SCUBA-2 photometry with Herschel SPIRE data from HerMES, the submm spectral energy distribution (SED) is examined via the use of modified blackbody fits, yielding aggregate values for the IR luminosity, dust temperature and emissivity of =10^12 +/- 0.8 L_sol, =42 +/- 11 K and <\beta_D>=1.6 +/- 0.5, respectively. The relationship between these SED parameters and the physical properties of galaxies is investigated, revealing correlations between T_D and LIR and between \beta_D and both stellar mass and effective radius. The connection between star formation rate and stellar mass is explored, with 24 per cent of 450 \mu m sources found to be ``star-bursts'', i.e. displaying anomalously high specific SFRs. However, both the number density and observed properties of these ``star-burst'' galaxies are found consistent with the population of normal star-forming galaxies.
    08/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context. This paper discusses the sensitivity of water lines to chemical processes and radiative transfer for the protoplanetary disk around TW Hya. The study focuses on the Herschel spectral range in the context of new line detections with the PACS instrument from the Gas in Protoplanetary Systems project (GASPS). Aims. The paper presents an overview of the chemistry in the main water reservoirs in the disk around TW Hya. It discusses the limitations in the interpretation of observed water line fluxes. Methods. ... (abbreviated) Results. We report new line detections of p-H2O (3_22-2_11) at 89.99 micron and CO J=18-17 at 144.78 micron for the disk around TW Hya. Disk modeling shows that the far-IR fine structure lines ([OI], [CII]) and molecular submm lines are very robust to uncertainties in the chemistry, while the water line fluxes can change by factors of a few. The water lines are optically thick, sub-thermally excited and can couple to the background continuum radiation field. The low-excitation water lines are also sensitive to uncertainties in the collision rates, e.g. with neutral hydrogen. The gas temperature plays an important role for the [OI] fine structure line fluxes, the water line fluxes originating from the inner disk as well as the high excitation CO, CH+ and OH lines. Conclusions. Due to their sensitivity on chemical input data and radiative transfer, water lines have to be used cautiously for understanding details of the disk structure. Water lines covering a wide range of excitation energies provide access to the various gas phase water reservoirs (inside and outside the snow line) in protoplanetary disks and thus provide important information on where gas-phase water is potentially located. Experimental and/or theoretical collision rates for H2O with atomic hydrogen are needed to diminish uncertainties from water line radiative transfer.
    Astronomy and Astrophysics 08/2013; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-mass stars influence their environment in different ways including feedback via their FUV radiation. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Different chemical layers in PDRs are traced by different species observable at sub-mm and Far Infrared wavelengths. In this poster we present results from two molecular line surveys. One of them is the James Clerk Maxwell Telescope (JCMT) Spectral Legacy Survey (SLS) toward the luminous (>10^7 L_Sun), massive (~10^6 M_Sun), and distant (11.4 kpc) star-forming region W49A. The SLS images a 2x2 arcminute field toward W49A in the 330-373 GHz frequency range. The detected molecular lines reveal a complex chemistry and the importance of FUV-irradiation in the heating and chemistry of the region. The other line survey presented in the poster is part of the HEXOS (Herschel observations of EXtra-Ordinary Sources, PI: E. Bergin) key program using the Herschel Space Observatory and is toward the nearby (~420 pc) prototypical edge-on Orion Bar PDR and the dense molecular condensation Orion S. Reactive ions, such as CH+, SH+, and CO+, detected as a part of this line survey trace the warm (~500-1000 K) surface region of PDRs. Spectrally resolved HIFI and spectrally unresolved PACS spectra give constraints on the chemistry and excitation of reactive ions in these regions.
    Protostars & Planets VI; 07/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant species, e.g., H+, H2+ and H3+; C+ and N+; C and O; CO and H2O; OH+, H2O+ and H3O+; HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in AGN. The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 10^4 years. Through ALMA observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the SMBH accretion rate. Strong evolutionary trends, on time scales of 10^4-10^8 years, are also found in species such as H3O+, CO, and H$_2$O. These reflect, respectively, time dependent effects in the ionization balance, the transient nature of the production of molecular gas, and the freeze-out/sublimation of water.
    The Journal of Physical Chemistry A 06/2013; · 2.77 Impact Factor
  • Source
    C. Van Borm, M. Spaans
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. The seeds of the supermassive black holes (SMBHs) with masses of ~10^9 M_Sun observed already at z ~ 6 may have formed through the direct collapse of primordial gas in T_vir >~ 10^4 K halos, whereby the gas must stay hot (~10^4 K) in order to avoid fragmentation. Aims. The interplay between magnetic fields, turbulence, and a UV radiation background during the gravitational collapse of primordial gas in a halo is explored; in particular, the possibilities for avoiding fragmentation are examined. Methods. Using an analytical one-zone model, the evolution of a cloud of primordial gas is followed from its initial cosmic expansion through turnaround, virialization, and collapse up to a density of 10^7 cm-3. Results. It was found that in halos with no significant turbulence, the critical UV background intensity (J_21^crit) for keeping the gas hot is lower by a factor ~10 for an initial comoving magnetic field B_0 ~ 2 nG than for the zero-field case, and even lower for stronger fields. In turbulent halos, J_21^crit is found to be a factor ~10 lower than for the zero-field-zero-turbulence case, and the stronger the turbulence (more massive halo and/or stronger turbulent heating) the lower J_21^crit. Conclusions. The reduction in J_21^crit is particularly important, since it exponentially increases the number of halos exposed to a supercritical radiation background.
    Astronomy and Astrophysics 04/2013; · 5.08 Impact Factor

Publication Stats

1k Citations
525.57 Total Impact Points

Institutions

  • 2006–2014
    • University of Groningen
      • Kapteyn Astronomical Institute
      Groningen, Groningen, Netherlands
  • 2010
    • Universität Heidelberg
      • Institute of Theoretical Physics
      Heidelburg, Baden-Württemberg, Germany
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 1999–2009
    • Harvard-Smithsonian Center for Astrophysics
      Cambridge, Massachusetts, United States
  • 1997–2009
    • Johns Hopkins University
      • Department of Physics and Astronomy
      Baltimore, MD, United States
  • 2008
    • Netherlands Institute for Space Research, Utrecht
      Utrecht, Utrecht, Netherlands