Are you Oleg Brodsky?

Claim your profile

Publications (2)5.08 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A new protein expression vector design utilizing an N-terminal six-histidine tag and tobacco etch virus protease cleavage site upstream of the hepatitis C virus NS5A sequence has resulted in a more straightforward purification method and improved yields of purified NS5A domain I protein. High-resolution diffracting crystals of NS5A domain I (amino acids 33 to 202) [NS5A(33-202)] were obtained by using detergent additive crystallization screens, leading to the structure of a homodimer which is organized differently from that published previously (T. L. Tellinghuisen, J. Marcotrigiano, and C. M. Rice, Nature 435:374-379, 2005) yet is consistent with a membrane association model for NS5A. The monomer-monomer interface of NS5A(33-202) features an extensive buried surface area involving the most-highly conserved face of each monomer. The two alternate structural forms of domain I now available may be indicative of the multiple roles emerging for NS5A in viral RNA replication and viral particle assembly.
    Journal of Virology 03/2009; 83(9):4395-403. · 5.08 Impact Factor
  • Source
    Oleg Brodsky, Ciarán N Cronin
    [show abstract] [hide abstract]
    ABSTRACT: A novel microfermentation and scale-up platform for parallel protein production in Escherichia coli is described. The vertical shaker device Vertiga, which generates low-volume high density (A(600) approximately 20) Escherichia coli cultures in 96-position deep-well plates without auxiliary oxygen supplementation, has been coupled to a new disposable shake flask design, the Ultra Yield flask, that allows for equally high cell culture densities to be obtained. The Ultra Yield flask, which accommodates up to 1 l in culture volume, has a baffled base and a more vertical wall construction compared to traditional shake flask designs. Experimental data is presented demonstrating that the Ultra Yield flask generates, on average, an equivalent amount of recombinant protein per unit cell culture density as do traditional shake flask designs but at a substantially greater amount per unit volume. The combination of Vertiga and the Ultra Yield flask provides a convenient and scalable low-cost solution to parallel protein production in Escherichia coli.
    Journal of Structural and Functional Genomics 07/2006; 7(2):101-8.