Shu-chuan Jao

Texas A&M University, College Station, TX, United States

Are you Shu-chuan Jao?

Claim your profile

Publications (5)16.56 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the structure of an orthopoxvirus vCCI in complex with a human CC chemokine, MIP-1beta (macrophage inflammatory protein 1beta). vCCI binds to the chemokine with 1:1 stoichiometry, forming a complex of 311 aa. vCCI uses residues from its beta-sheet II to interact with a surface of MIP-1beta that includes residues adjacent to its N terminus, as well as residues in the 20's region and the 40's loop. This structure reveals the strategy used by vCCI to tightly bind numerous chemokines while retaining selectivity for the CC chemokine subfamily.
    Proceedings of the National Academy of Sciences 10/2006; 103(38):13985-90. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MIP-1beta is a CC-chemokine that plays a role in inflammation and host defense mechanisms by interacting with its specific receptor CCR5. CCR5 is a major coreceptor for macrophage-tropic human immunodeficiency virus (HIV), and as a consequence, MIP-1beta can inhibit HIV entry. It is therefore of interest to understand how MIP-1beta and other CCR5 ligands bind to their receptor, as such understanding could lead to the rational design of more efficient HIV entry blockers. We have previously demonstrated the importance of Phe13, and of basic residues of the 40's loop, in mediating high-affinity binding of MIP-1beta to CCR5. We have now investigated further the relative contribution of other MIP-1beta residues in the interaction of the chemokine with CCR5, by studying the functional consequences of point mutations within the N-loop and the 3(10) turn of MIP-1beta, affecting the charge, size, and H-bonding properties of the side chains. Our data suggest that, in addition to Phe13, three amino acids of the N-loop and 3(10) turn (Arg18, Lys19, and Arg22) interact with CCR5 through their positive charge. We also found that Pro21 contributes to the CCR5 binding properties of MIP-1beta. Moreover, NMR spectroscopy has revealed that the presence of Tyr at position 15 is necessary for the proper folding of the chemokine. Our results therefore demonstrate that the binding determinants of MIP-1beta consist of residues arranged on one surface of the protein, including most of the basic residues in MIP-1beta, as well as two key hydrophobic groups. The good correlation observed between the potency of the mutants in a functional assay and their binding affinity strongly argues that basic residues Arg18, Lys19, and Arg22 of MIP-1beta are essential for its CCR5 binding properties, without a primary effect on CCR5 activation.
    Biochemistry 12/2002; 41(46):13548-55. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MIP-1‚ is a CC-chemokine that plays a role in inflammation and host defense mechanisms by interacting with its specific receptor CCR5. CCR5 is a major coreceptor for macrophage-tropic human immunodeficiency virus (HIV), and as a consequence, MIP-1‚ can inhibit HIV entry. It is therefore of interest to understand how MIP-1‚ and other CCR5 ligands bind to their receptor, as such understanding could lead to the rational design of more efficient HIV entry blockers. We have previously demonstrated the importance of Phe13, and of basic residues of the 40's loop, in mediating high-affinity binding of MIP-1‚ to CCR5. We have now investigated further the relative contribution of other MIP-1‚ residues in the interaction of the chemokine with CCR5, by studying the functional consequences of point mutations within the N-loop and the 310 turn of MIP-1‚, affecting the charge, size, and H-bonding properties of the side chains. Our data suggest that, in addition to Phe13, three amino acids of the N-loop and 3 10 turn (Arg18, Lys19, and Arg22) interact with CCR5 through their positive charge. We also found that Pro21 contributes to the CCR5 binding properties of MIP-1‚. Moreover, NMR spectroscopy has revealed that the presence of Tyr at position 15 is necessary for the proper folding of the chemokine. Our results therefore demonstrate that the binding determinants of MIP-1‚ consist of residues arranged on one surface of the protein, including most of the basic residues in MIP-1‚, as well as two key hydrophobic groups. The good correlation observed between the potency of the mutants in a functional assay and their binding affinity strongly argues that basic residues Arg18, Lys19, and Arg22 of MIP-1‚ are essential for its CCR5 binding properties, without a primary effect on CCR5 activation.
    Biochemistry - BIOCHEMISTRY-USA. 01/2002; 41(46):13548-13555.
  • [Show abstract] [Hide abstract]
    ABSTRACT: MIP-1beta, a member of the chemokine family of proteins, tightly binds the receptor CCR5 as part of its natural function in the immune response, and in doing so also blocks the ability of many strains of HIV to enter the cell. The single most important MIP-1beta residue known to contribute to its interaction with the receptor is Phe13, which when mutated reduces the ability of MIP-1beta to bind to CCR5 by more than 1000-fold. To obtain a structural understanding of the dramatic effect of the absence of Phe13 in MIP-1beta, we used multidimensional heteronuclear NMR to determine the three-dimensional structure of the MIP-1beta F13A variant. We had previously shown that, unlike the wild-type protein which has been shown to be a tight dimer, the F13A mutant is monomeric even at high concentrations [Laurence, J. S., Blanpain, C., Burgner, J. W., Parmentier, M., and LiWang, P. J. (2000) Biochemistry 39, 3401-3409], leading to significant changes in the NMR spectra of F13A and the wild-type protein. We have obtained a total of 940 structural restraints for MIP-1beta F13A, and have calculated a family of structures having a backbone rmsd from the average of 0.55 A (residues 12-67). A structural comparison of the F13A mutant with a fully active monomeric variant, P8A, shows that despite some differences in the (1)H-(15)N HSQC spectra the two are nearly identical in NOE distance restraints and in backbone conformation. A comparison of F13A with the wild-type protein shows largely the same fold, although differences exist in the N-terminal and loop regions for which the loss of the dimer in F13A can mainly account. A dynamics comparison confirms greater flexibility in F13A than in the wild-type protein in regions of dimer contact in the wild-type protein. In an analysis to determine if the large functional effect resulting from the loss of Phe13 is due to the local side chain change or due to more global structural changes, we conclude that local effects predominate. This suggests that a strategy for designing tight binding anti-CCR5 therapeutics should include a Phe-like component.
    Biochemistry 10/2001; 40(36):10782-91. · 3.38 Impact Factor
  • Biochemistry - BIOCHEMISTRY-USA. 01/2001; 40(36):10782-10791.

Publication Stats

65 Citations
16.56 Total Impact Points

Institutions

  • 2006
    • Texas A&M University
      • Department of Biochemistry/Biophysics
      College Station, TX, United States
  • 2002
    • Université Libre de Bruxelles
      • Institute of Interdisciplinary Research in human and molecular Biology (IRIBHM)
      Brussels, BRU, Belgium