Are you Marcus D Ballinger?

Claim your profile

Publications (3)14.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Aurora kinases play key roles in regulating centrosome maturation, mitotic spindle formation, and cytokinesis during cell division, and are considered promising drug targets due to their frequent overexpression in a variety of human cancers. SNS-314 is a selective and potent pan Aurora inhibitor currently in a dose escalation phase 1 clinical trial for the treatment of patients with advanced solid tumors. Here, we report the antiproliferative effects of SNS-314 in combination with common chemotherapeutics in cell culture and xenograft models. The HCT116 colorectal carcinoma cell line, with intact or depleted p53 protein levels, was treated with SNS-314 and a cytotoxic chemotherapeutic from a panel comprised of gemcitabine, 5-fluorouracil (5-FU), carboplatin, daunomycin, SN-38 (the active metabolite of irinotecan), docetaxel, and vincristine. Combinations were administered under either concurrent or sequential schedules. SNS-314 has predominantly additive effects when administered concurrently with commonly used anticancer agents. Sequential administration of SNS-314 with chemotherapeutic compounds showed additive antiproliferative effects with carboplatin, gemcitabine, 5-FU, daunomycin, and SN-38, and synergy was observed in combination with gemcitabine, docetaxel, or vincristine. The most profound antiproliferative effects were observed with sequential administration of SNS-314 followed by docetaxel or vincristine. In vivo, SNS-314 potentiated the antitumor activity of docetaxel in xenografts. Both the in vitro synergies observed between SNS-314 and agents that target the mitotic spindle and the potentiation seen with docetaxel in vivo are consistent with a mechanism of action in which Aurora inhibition bypasses the mitotic spindle assembly checkpoint and prevents cytokinesis, augmenting subsequent spindle toxin-mediated mitotic catastrophe and cell death.
    Molecular Cancer Therapeutics 05/2009; 8(4):930-9. · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACE-1 (beta-site amyloid precursor protein cleaving enzyme), a prominent target in Alzheimer's disease drug discovery efforts, was surveyed using Tethering technology to discover small molecule fragment ligands that bind to the enzyme active site. Screens of a library of >15000 thiol-containing fragments versus a panel of BACE-1 active site cysteine mutants under redox-controlled conditions revealed several novel amine-containing fragments that could be selectively captured by subsets of the tethering sites. For one such hit class, defined by a central aminobenzylpiperidine (ABP) moiety, X-ray crystal structures of BACE mutant-disulfide conjugates revealed that the fragment bound by engaging both catalytic aspartates with hydrogen bonds. The affinities of ABP fragments were improved by structure-guided chemistry, first for conjugation as thiol-containing fragments and then for stand-alone, noncovalent inhibition of wild-type (WT) BACE-1 activity. Crystallography confirmed that the inhibitors bound in exactly the same mode as the disulfide-conjugated fragments that were originally selected from the screen. The ABP ligands represent a new type of nonpeptidic BACE-1 inhibitor motif that has not been described in the aspartyl protease literature and may serve as a starting point for the development of BACE-1-directed Alzheimer's disease therapeutics.
    Biochemistry 04/2009; 48(21):4488-96. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel beta-site amyloid precursor protein cleaving enzyme (BACE-1) inhibitors containing an aminoethylene (AE) tetrahedral intermediate isostere were synthesized and evaluated in comparison to corresponding hydroxyethylene (HE) compounds. Enzymatic inhibitory values were similar for both isosteres, as were structure-activity relationships with respect to stereochemical preference and substituent variation (P2/P3, P1, and P2'); however, the AE compounds were markedly more potent in a cell-based assay for reduction of beta-secretase activity. The incorporation of preferred P2/P3, P1, and P2' substituents into the AE pharmacophore yielded compound 7, which possessed enzymatic and cell assay IC(50)s of 26 nM and 180 nM, respectively. A three-dimensional crystal structure of 7 in complex with BACE-1 revealed that the amino group of the inhibitor core engages the catalytic aspartates in a manner analogous to hydroxyl groups in HE inhibitors. The AE isostere class represents a promising advance in the development of BACE-1 inhibitors.
    Journal of Medicinal Chemistry 03/2006; 49(3):839-42. · 5.61 Impact Factor