Are you Yongzhang Zhu?

Claim your profile

Publications (6)24.28 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In China, Leptospira interrogans serovar Lai strain 56601 (str.56601) is one of main pathogenic strains that cause severe leptospirosis in both human and animals. The genome of this organism was completely sequenced in 2003. However, in 2011, we identified and corrected some assembly errors in the str.56601 genome due to the repeat sequences widely distributed in the Leptospira genome. In this study, we re-analyzed the previously reported mobile, phage-related genomic island in the chromosome and rectified detailed sequence information in both the plasmid and chromosome using various experimental methods. The presence of a separate circular extrachromosomal plasmid was also confirmed, and its location in the genomic region was determined relative to the genomic island reported in L. interrogans serovar Lai by a combination of pulsed-field gel electrophoresis -based and plasmid extraction-based Southern blot analysis. This report confirmed that the separate extrachromosomal circular plasmid is not integrated into the chromosome of L. interrogans str.56601 and markedly improved our understanding of the genomic organization, evolution, and pathogenesis of L. interrogans. In particular, characterization of this extrachromosomal circular plasmid will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
    Acta Biochimica et Biophysica Sinica 05/2014; · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.
    Omics: a journal of integrative biology 07/2013; · 2.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Klebsiella pneumoniae is a member of the family Enterobacteriaceae, opportunistic pathogens that are among the eight most prevalent infectious agents in hospitals. The emergence of multidrug-resistant strains of K. pneumoniae has became a public health problem globally. To develop an effective antimicrobial agent, we isolated a bacteriophage, named JD001, from seawater and sequenced its genome. Comparative genome analysis of phage JD001 with other K. pneumoniae bacteriophages revealed that phage JD001 has little similarity to previously published K. pneumoniae phages KP15, KP32, KP34, and phiKO2. Here we announce the complete genome sequence of JD001 and report major findings from the genomic analysis.
    Journal of Virology 12/2012; 86(24):13843. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial peptides (AMPs) are one of several potential antibacterial agents in the current era of antibiotics facing severe challenges. In this study, the bactericidal activity and stability of two eukaryotic AMPs were determined. Both AMPs showed specific antibacterial activity in a HEK293T cell model infected with meticillin-resistant Staphylococcus aureus. The recombinant eukaryotic AMP pVAX1/hBD3-CBD showed better bactericidal activity and stability than the eukaryotic AMP pVAX1/hBD3. These results illustrate that this peptide, designed and used with eukaryotic expression and recombinant methods, should be studied and applied in further AMP research and trials.
    International journal of antimicrobial agents 04/2012; 39(6):496-9. · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The virulence-attenuated Leptospira interrogans serovar Lai strain IPAV was derived by prolonged laboratory passage from a highly virulent ancestral strain isolated in China. We studied the genetic variations of IPAV that render it avirulent via comparative analysis against the pathogenic L. interrogans serovar Lai strain 56601. The complete genome sequence of the IPAV strain was determined and used to compare with, and then rectify and reannotate the genome sequence of strain 56601. Aside from their highly similar genomic structure and gene order, a total of 33 insertions, 53 deletions and 301 single-nucleotide variations (SNVs) were detected throughout the genome of IPAV directly affecting 101 genes, either in their 5' upstream region or within their coding region. Among them, the majority of the 44 functional genes are involved in signal transduction, stress response, transmembrane transport and nitrogen metabolism. Comparative proteomic analysis based on quantitative liquid chromatography (LC)-MS/MS data revealed that among 1 627 selected pairs of orthologs, 174 genes in the IPAV strain were upregulated, with enrichment mainly in classes of energy production and lipid metabolism. In contrast, 228 genes in strain 56601 were upregulated, with the majority enriched in the categories of protein translation and DNA replication/repair. The combination of genomic and proteomic approaches illustrated that altered expression or mutations in critical genes, such as those encoding a Ser/Thr kinase, carbon-starvation protein CstA, glutamine synthetase, GTP-binding protein BipA, ribonucleotide-diphosphate reductase and phosphate transporter, and alterations in the translational profile of lipoproteins or outer membrane proteins are likely to account for the virulence attenuation in strain IPAV.
    Cell Research 03/2011; 21(8):1210-29. · 10.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A recombinant pertussis DNA vaccine was described here with its immunogenicity and the ability to induce protection against B. pertussis infection in mice. Three immunodominant antigen gene fragments of pertussis, pertussis toxin subunit 1 (pts1), fragments of pertactin (prn) and filamentous hemagglutinin (fha), were recombined as fragment pts1-prn-fha named ppf, and it was cloned to plasmid pVAX1 as pVAX1/ppf. Compared to those injected with pVAX1, the mice injected with pVAX1/ppf significantly elicited more antigen specific antibody anti-PTS1, anti-PRN, anti-FHA and cytokine IL-10, IFN-gamma. When pGM-CSF was coinjected with pVAX1/ppf, the mice showed significantly increases of the three antibodies and cytokine IL-10, IL-4, IFN-gamma and TNF-alpha compared to those injected with pVAX1 only. The mice in group pVAX1/ppf & pGM-CSF, in particular; induced much more anti-PTS1, IL-4 and TNF-alpha than those in group pVAX1/ppf. In the intracerebral mouse protection test, the mice immunized with pVAX1/ppf or pVAX1/ppf & pGM-CSF induced protection to a lethal dose of B. pertussis. The results indicate that recombinant DNA vaccine and pGM-CSF coinjection can induce protective immunity against B. pertussis, demonstrating a valuable method to prevent pertussis.
    Microbiology and Immunology 01/2006; 50(12):929-36. · 1.55 Impact Factor