Anna Manlapat

Georgia Health Sciences University, Augusta, GA, United States

Are you Anna Manlapat?

Claim your profile

Publications (5)16.35 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Following CD80/86 (B7) and TLR9 ligation, small subsets of splenic dendritic cells expressing CD19 (CD19(+) DC) acquire potent T cell regulatory functions due to induced expression of the intracellular enzyme indoleamine 2,3-dioxygenase (IDO), which catabolizes tryptophan. In CD19(+) DC, IFN type I (IFN-alpha) is the obligate inducer of IDO. We now report that IFN-alpha production needed to stimulate high-level expression of IDO following B7 ligation is itself dependent on basal levels of IDO activity. Genetic and pharmacologic ablation of IDO completely abrogated IFN-alpha production by CD19(+) DC after B7 ligation. In contrast, IDO ablation did not block IFN-alpha production by CD19(+) DC after TLR9 ligation. IDO-mediated control of IFN-alpha production depended on tryptophan depletion as adding excess tryptophan also blocked IFN-alpha expression after B7 ligation. Consistent with this, DC from mice deficient in general control of non-derepressible-2 (GCN2)-kinase, a component of the cellular stress response to amino acid withdrawal, did not produce IFN-alpha following B7 ligation, but produced IFN-alpha after TLR9 ligation. Thus, B7 and TLR9 ligands stimulate IFN-alpha expression in CD19(+) DC via distinct signaling pathways. In the case of B7 ligation, IDO activates cell-autonomous signals essential for IFN-alpha production, most likely by activating the GCN2-kinase-dependent stress response.
    European Journal of Immunology 05/2007; 37(4):1064-71. · 4.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CpG oligodeoxynucleotides (CpG-ODNs) stimulate innate and adaptive immunity by binding to TLR9 molecules. Paradoxically, expression of the immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) is induced following i.v. CpG-ODN administration to mice. CpG-ODNs induced selective IDO expression by a minor population of splenic CD19+ dendritic cells (DCs) that did not express the plasmacytoid DC marker 120G8. Following CpG-ODN treatment, CD19+ DCs acquired potent IDO-dependent T cell suppressive functions. Signaling through IFN type I receptors was essential for IDO up-regulation, and CpG-ODNs induced selective activation of STAT-1 in CD19+ DCs. Thus, CpG-ODNs delivered systemically at relatively high doses elicited potent T cell regulatory responses by acting on a discrete, minor population of splenic DCs. The ability of CpG-ODNs to induce both stimulatory and regulatory responses offers novel opportunities for using them as immunomodulatory reagents but may complicate therapeutic use of CpG-ODNs to stimulate antitumor immunity in cancer patients.
    The Journal of Immunology 12/2005; 175(9):5601-5. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By ligating CD80/CD86 (B7) molecules, the synthetic immunomodulatory reagent CTLA4-Ig (soluble synthetic CTLA4 fusion protein) induces expression of the enzyme indoleamine 2,3-dioxygenase (IDO) in some dendritic cells (DCs), which acquire potent T cell regulatory functions as a consequence. Here we show that this response occurred exclusively in a population of splenic DCs co-expressing the marker CD19. B7 ligation induced activation of the transcription factor signal transducer and activator of transcription (STAT1) in sorted CD19+, but not CD19(NEG), DCs. STAT1 activation occurred even when DCs lacked receptors for type II IFN (IFNgamma); however, STAT1 activation and IDO up-regulation were not observed when DCs lacked receptors for type I IFN (IFNalphabeta). Thus, IFNalpha, but not IFNgamma, signaling was essential for STAT1 activation and IDO up-regulation in CD19+ DCs following B7 ligation. Consistent with these findings, B7 ligation also induced sorted CD19+, but not CD19(NEG), DCs to express IFNalpha. Moreover, recombinant IFNalpha induced CD19+, but not CD19(NEG), DCs to mediate IDO-dependent T cell suppression, showing that IFNalpha signaling could substitute for upstream signals from B7. These data reveal that a minor population of splenic DCs expressing the CD19 marker is uniquely responsive to B7 ligation, and that IFNalpha-mediated STAT1 activation is an essential intermediary signaling pathway that promotes IDO induction in these DCs. Thus, CD19+ DCs may be a target for regulatory T cells expressing surface CTLA4, and may suppress T cell responses via induction of IDO.
    International Immunology 08/2005; 17(7):909-19. · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Folate is essential for cellular proliferation and tissue regeneration. As mammalian cells cannot synthesize folates de novo, tightly regulated cellular uptake processes have evolved to sustain sufficient levels of intracellular tetrahydrofolate cofactors to support biosynthesis of purines, pyrimidines, and some amino acids (serine, methionine). Though reduced-folate carrier (RFC) is one of the major proteins mediating folate transport, knowledge of the developmental expression of RFC is lacking. We utilized in situ hybridization and immunolocalization to determine the developmental distribution of RFC message and protein, respectively. In the mouse, RFC transcripts and protein are expressed in the E10.0 placenta and yolk sac. In the E9.0 to E11.5 mouse embryo RFC is widely detectable, with intense signal localized to cell populations in the neural tube, craniofacial region, limb buds and heart. During early development, RFC is expressed throughout the eye, but by E12.5, RFC protein becomes localized to the retinal pigment epithelium (RPE). Clinical studies show a statistical decrease in the number of neural tube defects, craniofacial abnormalities, cardiovascular defects and limb abnormalities detected in offspring of female patients given supplementary folate during pregnancy. The mechanism, however, by which folate supplementation ameliorates the occurrence of developmental defects is unclear. The present work demonstrates that RFC is present in placenta and yolk sac and provides the first evidence that it is expressed in the neural tube, craniofacial region, limb buds and heart during organogenesis. These findings suggest that rapidly dividing cells in the developing neural tube, craniofacial region, limb buds and heart may be particularly susceptible to folate deficiency.
    BMC Developmental Biology 08/2003; 3:6. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conserved intracellular heme-containing enzyme indoleamine 2,3 dioxygenase (IDO) catabolizes the first, rate-limiting step of oxidative tryptophan catabolism. Minor populations of human and murine dendritic cells (DCs) can be induced to express IDO (IDO-competent DCs), which acquire potent and dominant T cell suppressive functions as a consequence. In mouse spleen, B7 (CTLA4-Ig) and TLR9 (CpG-ODNs) ligands induce IDO expression in a novel DC subset co-expressing the B cell marker CD19 (CD11c HIGH B220+CD19+120G8 NEG ). A closely related IDO+ DC population also accumulates in tissues associated with tumor growth. CD19+ DCs comprise