P Licina

Princess Alexandra Hospital (Queensland Health), Brisbane, Queensland, Australia

Are you P Licina?

Claim your profile

Publications (4)21.76 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Olfactory ensheathing cells show promise in preclinical animal models as a cell transplantation therapy for repair of the injured spinal cord. This is a report of a clinical trial of autologous transplantation of olfactory ensheathing cells into the spinal cord in six patients with complete, thoracic paraplegia. We previously reported on the methods of surgery and transplantation and the safety aspects of the trial 1 year after transplantation. Here we address the overall design of the trial and the safety of the procedure, assessed during a period of 3 years following the transplantation surgery. All patients were assessed at entry into the trial and regularly during the period of the trial. Clinical assessments included medical, psychosocial, radiological and neurological, as well as specialized tests of neurological and functional deficits (standard American Spinal Injury Association and Functional Independence Measure assessments). Quantitative test included neurophysiological tests of sensory and motor function below the level of injury. The trial was a Phase I/IIa design whose main aim was to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the injured spinal cord in human paraplegia. The design included a control group who did not receive surgery, otherwise closely matched to the transplant recipient group. This group acted as a control for the assessors, who were blind to the treatment status of the patients. The control group also provided the opportunity for preliminary assessment of the efficacy of the transplantation. There were no adverse findings 3 years after autologous transplantation of olfactory ensheathing cells into spinal cords injured at least 2 years prior to transplantation. The magnetic resonance images (MRIs) at 3 years showed no change from preoperative MRIs or intervening MRIs at 1 and 2 years, with no evidence of any tumour of introduced cells and no development of post-traumatic syringomyelia or other adverse radiological findings. There were no significant functional changes in any patients and no neuropathic pain. In one transplant recipient, there was an improvement over 3 segments in light touch and pin prick sensitivity bilaterally, anteriorly and posteriorly. We conclude that transplantation of autologous olfactory ensheathing cells into the injured spinal cord is feasible and is safe up to 3 years of post-implantation, however, this conclusion should be considered preliminary because of the small number of trial patients.
    Brain 10/2008; 131(Pt 9):2376-86. · 9.92 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Olfactory ensheathing cells show promise in preclinical animal models as a cell transplantation therapy for repair of the injured spinal cord. This is a report of a clinical trial of autologous transplantation of olfactory ensheathing cells into the spinal cord in six patients with complete, thoracic paraplegia. We previously reported on the methods of surgery and transplantation and the safety aspects of the trial 1 year after transplantation. Here we address the overall design of the trial and the safety of the procedure, assessed during a period of 3 years following the transplantation surgery. All patients were assessed at entry into the trial and regularly during the period of the trial. Clinical assessments included medical, psychosocial, radiological and neurological, as well as specialized tests of neurological and functional deficits (standard American Spinal Injury Association and Functional Independence Measure assessments). Quantitative test included neurophysiological tests of sensory and motor function below the level of injury. The trial was a Phase I/IIa design whose main aim was to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the injured spinal cord in human paraplegia. The design included a control group who did not receive surgery, otherwise closely matched to the transplant recipient group. This group acted as a control for the assessors, who were blind to the treatment status of the patients. The control group also provided the opportunity for preliminary assessment of the efficacy of the transplantation. There were no adverse findings 3 years after autologous transplantation of olfactory ensheathing cells into spinal cords injured at least 2 years prior to transplantation. The magnetic resonance images (MRIs) at 3 years showed no change from preoperative MRIs or intervening MRIs at 1 and 2 years, with no evidence of any tumour of introduced cells and no development of post-traumatic syringomyelia or other adverse radiological findings. There were no significant functional changes in any patients and no neuropathic pain. In one transplant recipient, there was an improvement over 3 segments in light touch and pin prick sensitivity bilaterally, anteriorly and posteriorly. We conclude that transplantation of autologous olfactory ensheathing cells into the injured spinal cord is feasible and is safe up to 3 years of post-implantation, however, this conclusion should be considered preliminary because of the small number of trial patients.
    Brain. 01/2008; 131:2376-86.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Olfactory ensheathing cells transplanted into the injured spinal cord in animals promote regeneration and remyelination of descending motor pathways through the site of injury and the return of motor functions. In a single-blind, Phase I clinical trial, we aimed to test the feasibility and safety of transplantation of autologous olfactory ensheathing cells into the injured spinal cord in human paraplegia. Participants were three male paraplegics, 18-55 years of age, with stable, complete thoracic injuries 6-32 months previously, with stable spinal column, no implanted prostheses, and no syrinx. Olfactory ensheathing cells were grown and purified in vitro from nasal biopsies and injected into the region of damaged spinal cord. The trial design includes a matched injury group as a control for the assessors, who are blind to treatment status. Assessments, made before transplantation and at regular intervals subsequently, include MRI, medical, neurological and psychosocial assessments, and standard American Spinal Injury Association and Functional Independence Measure assessments. One year after cell implantation, there were no medical, surgical or other complications to indicate that the procedure is unsafe. There is no evidence of spinal cord damage nor of cyst, syrinx or tumour formation. There was no neuropathic pain reported by the participants, no change in psychosocial status and no evidence of deterioration in neurological status. Participants will be followed for 3 years to confirm long-term safety and to compare neurological, functional and psychosocial outcomes with the control group. We conclude transplantation of autologous olfactory ensheathing cells into the injured spinal cord is feasible and is safe up to one year post-implantation.
    Brain 01/2006; 128(Pt 12):2951-60. · 9.92 Impact Factor
  • Paul Licina, Adrian M Nowitzke
    [show abstract] [hide abstract]
    ABSTRACT: Spinal trauma often results in a complex interaction of injuries to the musculoskeletal and nervous systems. This combination of biomechanical and neurological considerations provides a unique challenge to those dealing with the spinally injured patient. Proper assessment of the injuries sustained by the patient remains the initial, yet key, step in determining appropriate management. The aim of the physical examination is not only to characterize the nature of the injury to the vertebral column, but also to determine the extent of actual and potential damage to the neural elements. It is also concerned with detecting associated injuries of the brain, viscera, and limbs that can impact on management and outcome, particularly of any neurological deficit. Further information about the spinal column and spinal cord is derived from appropriate radiological assessment, which is evolving with the increasing sophistication of imaging modalities. In spinal injury, classification systems are particularly important as they simplify a diverse range of injury patterns into a useable and reproducible form that may be used to aid communication among clinicians, guide management for individual patients, and provide the basis for research consistency. The medical management involves consideration of the impact of spinal injury, in particular cord injury, on aspects including resuscitation and anticoagulation, as well as the role of steroids. The definitive management of the spinal column injury may be operative or nonoperative. Factors influencing this decision are biomechanical (stabilization of the unstable spine and reduction of deformity) and neurological (improvement in deficit and decompression of neural elements). This article considers these issues and aims to present a balanced and useful algorithm for clinicians to use when faced with spinal injury.
    Injury 08/2005; 36 Suppl 2:B2-12. · 1.93 Impact Factor