Are you Samir Hazra?

Claim your profile

Publications (2)8.49 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical efficacy of cardiac cell therapy may be compromised by its target population, patients with endothelial dysfunction. In vivo inhibition by endothelial dysfunction has been demonstrated for protein angiogenesis but remains unclear for cell therapy. We examined whether hypercholesterolemia inhibits vasculogenic effects of transplanted human circulating progenitor cells in ischemic tissue and whether L-arginine, a nitric oxide donor, might prevent impairment. Athymic rats were fed either normal (group A) or high-cholesterol diets, the latter without (group B) or with (group C) oral L-arginine supplementation. Two weeks later, these rats underwent left femoral artery ligation followed by injection of 2 x 10(6) human circulating progenitor cells into left hind-limb muscle. A fourth group (group D) received supplemented high-cholesterol diets but no cells. Group B had biochemical evidence of endothelial dysfunction and reduced tissue endothelial nitric oxide synthase expression, whereas group A levels were the same as in group C. By 21 postoperative days, left hind-limb perfusion had recovered fully in groups A and C, partially in D, and not at all in B (38% lower than group A, P < or = .004). Lower arteriolar densities were found in groups and B and D than in groups A and C (P < or = .02). Engrafted human cell numbers were equivalent in all cell-transplanted groups after 3 weeks. Endothelial dysfunction inhibited effects of cell therapy, specifically vasculogenesis, suggesting a role for substrate modification to overcome this inhibition. Involved mechanisms appear related to use of cells but not engraftment and require further investigation.
    The Journal of thoracic and cardiovascular surgery 01/2010; 139(1):209-216.e2. · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enterovirus 70 (EV70), the causative agent of acute hemorrhagic conjunctivitis, exhibits a restricted tropism for conjunctival and corneal cells in vivo but infects a wide spectrum of mammalian cells in culture. Previously, we demonstrated that human CD55 is a receptor for EV70 on HeLa cells but that EV70 also binds to sialic acid-containing receptors on a variety of other human cell lines. Virus recognition of sialic acid attached to underlying glycans by a particular glycosidic linkage may contribute to host range, tissue tropism, and pathogenesis. Therefore, we tested the possibility that EV70 binds to alpha2,3-linked sialic acid, like other viruses associated with ocular infections. Through the use of linkage-specific sialidases, sialyltransferases, and lectins, we show that EV70 recognizes alpha2,3-linked sialic acid on human corneal epithelial cells and on U-937 cells. Virus attachment to both cell lines is CD55 independent and sensitive to benzyl N-acetyl-alpha-D-galactosaminide, an inhibitor of O-linked glycosylation. Virus binding to corneal cells, but not U-937 cells, is inhibited by proteinase K, but not by phosphatidylinositol-specific phospholipase C treatment. These results are consistent with the idea that a major EV70 receptor on corneal epithelial cells is an O-glycosylated, non-glycosyl phosphatidylinositol-anchored membrane glycoprotein containing alpha2,3-linked sialic acid, while sialylated receptors on U-937 cells are not proteinaceous.
    Journal of Virology 07/2005; 79(11):7087-94. · 5.08 Impact Factor