Benjamin J. Weiner

The University of Arizona, Tucson, Arizona, United States

Are you Benjamin J. Weiner?

Claim your profile

Publications (201)996.89 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a complete census of all 263 Herschel-detected sources within the HST Frontier Fields (HFF), a deep multi-filter HST programme covering six massive lensing clusters. We provide a robust legacy catalogue of Herschel fluxes, primarily based on imaging from the Herschel Lensing Survey (HLS) and PEP/HerMES Key Programmes. Photometry is derived via a simultaneous PSF-fit using priors from archival Spitzer imaging. We optimally combine Herschel, Spitzer and WISE infrared (IR) photometry with data from HST, VLA and ground-based observatories, identifying optical counterparts to gain source redshifts. Hence for each Herschel-detected source we also present magnification factor (mu), intrinsic IR luminosity and characteristic dust temperature, providing a comprehensive view of dust-obscured star formation within the HFF. We demonstrate the utility of our catalogues through an exploratory overview of HST morphologies for the IR-bright population. In particular we briefly describe the highest redshift (z>2.5) and most magnified (mu>4) sources in the gravitationally lensed background.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Do spatial distributions of dust grains in galaxies have typical forms, as do spatial distributions of stars? We investigate whether or not the distributions resemble uniform foreground screens, as commonly assumed by the high-redshift galaxy community. We use rest-frame infrared, ultraviolet, and H$\alpha$ line luminosities of dust-poor and dusty galaxies at z ~ 0 and z ~ 1 to compare measured H$\alpha$ escape fractions with those predicted by the Calzetti attenuation formula. The predictions, based on UV escape fractions, overestimate the measured H$\alpha$ escape fractions for all samples. The interpretation of this result for dust-poor z ~ 0 galaxies is that regions with ionizing stars have more dust than regions with nonionizing UV-emitting stars. Dust distributions for these galaxies are nonuniform. The interpretation of the overestimates for dusty galaxies at both redshifts is less clear. If the attenuation formula is inapplicable to these galaxies, perhaps the disagreements are unphysical; perhaps dust distributions in these galaxies are uniform. If the attenuation formula does apply, then dusty galaxies have nonuniform dust distributions; the distributions are more uniform than they are in dust-poor galaxies. A broad range of H$\alpha$ escape fractions at a given UV escape fraction for z ~ 1 dusty galaxies, if real, indicates diverse dust morphologies and the implausibility of the screen assumption.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the stellar mass Tully-Fisher relation (TFR, stellar mass versus rotation velocity) for a morphologically blind selection of emission line galaxies in the field at redshifts 0.1 $<$ z $<$ 0.375. Kinematics ($\sigma_g$, V$_{rot}$) are measured from emission lines in Keck/DEIMOS spectra and quantitative morphology is measured from V- and I-band Hubble images. We find a transition stellar mass in the TFR, $\log$ M$_*$ = 9.5 M$_{\odot}$. Above this mass, nearly all galaxies are rotation-dominated, on average more morphologically disk-like according to quantitative morphology, and lie on a relatively tight TFR. Below this mass, the TFR has significant scatter to low rotation velocity and galaxies can either be rotation-dominated disks on the TFR or asymmetric or compact galaxies which scatter off. We refer to this transition mass as the "mass of disk formation", M$_{\mathrm{df}}$ because above it all star-forming galaxies form disks (except for a small number of major mergers and highly star-forming systems), whereas below it a galaxy may or may not form a disk.
    Monthly Notices of the Royal Astronomical Society 06/2015; 452(1). DOI:10.1093/mnras/stv1298 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We measure the intrinsic Faber-Jackson (F-J) relation between velocity dispersion $\sigma$ and luminosity $L$ for massive, luminous red galaxies (LRGs) at redshift z~0.55. We achieve unprecedented precision by using a sample of 600,000 galaxies with spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third Sloan Digital Sky Survey (SDSS-III). We deconvolve the effects of photometric errors, limited spectroscopic signal-to-noise ratio, and red--blue galaxy confusion using a novel hierarchical Bayesian formalism that is generally applicable to any combination of photometric and spectroscopic observables. For a F-J relation of the form $L \propto \sigma^{\beta}$, we find $\beta = 7.8 \pm 1.1$ for $\sigma$ corrected to the effective radius. We find a very small intrinsic scatter of $s = 0.047 \pm 0.004$ in $\log_{10} \sigma$ at fixed $L$. Assuming plausible stellar population models, our measurements are consistent with no evolution in the parameters of the F-J relation over the range 0.5 < z < 0.7 covered by the sample. The steep F-J slope indicates that the scaling relations for the most massive LRGs are systematically different than the relations defined at lower masses, and the small scatter suggests that these galaxies more closely approximate a one-parameter family than their less massive counterparts. The curvature of the F-J relation has been observed previously in lower-mass and/or smaller galaxy samples; this new work provides a definitive measurement of the high-mass limit of the relation. Our results reinforce a picture in which the formation of LRGs is primarily driven by major dissipationless mergers.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1<lambda<1.7 microns with a resolving power of R~130 for point sources, thus providing rest-frame optical spectra for galaxies out to z~3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H<24 and a CANDELS photometric redshift z_phot > 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 < z < 3.456 and have a median redshift of z=1.282. The catalog contains a total of 234 new redshifts for galaxies at z>1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z~2, nearly doubling the number of such pairs previously identified.
    The Astronomical Journal 02/2015; 149(6). DOI:10.1088/0004-6256/149/6/178 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 sq. deg of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 sq. deg of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 sq. deg; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5,513 stars. Since its first light in 1998, SDSS has imaged over 1/3 the Celestial sphere in five bands and obtained over five million astronomical spectra.
    The Astrophysical Journal Supplement Series 01/2015; 219(1). DOI:10.1088/0067-0049/219/1/12 · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) project. We combine the effort from ten different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ~80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age < 100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for < 20 Myr sources) if nebular contribution is ignored.
    The Astrophysical Journal 12/2014; 801(2). DOI:10.1088/0004-637X/801/2/97 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present day stellar masses near M*, at 5x10^10 Msol (MW-mass) and 10^11 Msol (M31-mass). We study the typical progenitors of these galaxies using ZFOURGE, a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z~3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star-formation rates combining our deep multiwavelength imaging with near-IR HST imaging from CANDELS, and far-IR imaging from GOODS-H and CANDELS-H. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages, to redder dust-obscured IR-luminous galaxies in intermediate stages, and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of 2-3 lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star-formation in present-day M* galaxies requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and star-formation rates imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z~0 and are strongly anticorrelated with an increase in the S\'ersic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star-formation efficiency.
    The Astrophysical Journal 12/2014; 803(1). DOI:10.1088/0004-637X/803/1/26 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of the first multiply-imaged gravitationally-lensed supernova. The four images form an Einstein cross with over 2" diameter around a z=0.544 elliptical galaxy that is a member of the cluster MACSJ1149.6+2223. The supernova appeared in Hubble Space Telescope exposures taken on 3-20 November 2014 UT, as part of the Grism Lens-Amplified Survey from Space. The images of the supernova coincide with the strongly lensed arm of a spiral galaxy at z=1.491, which is itself multiply imaged by the cluster potential. A measurement of the time delays between the multiple images and their magnification will provide new unprecedented constraints on the distribution of luminous and dark matter in the lensing galaxy and in the cluster, as well as on the cosmic expansion rate.
    Science 11/2014; 347(6226). DOI:10.1126/science.aaa3350 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present clustering measurements and halo masses of star forming galaxies at 0.2 < z < 1.0. After excluding AGN, we construct a sample of 22553 24 {\mu}m sources selected from 8.42 deg^2 of the Spitzer MIPS AGN and Galaxy Evolution Survey of Bo\"otes. Mid-infrared imaging allows us to observe galaxies with the highest star formation rates (SFRs), less biased by dust obscuration afflicting the optical bands. We find that the galaxies with the highest SFRs have optical colors which are redder than typical blue cloud galaxies, with many residing within the green valley. At z > 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L_TIR > 10^11 Lsun) and is comprised entirely of LIRGs and ultra-luminous infrared galaxies (ULIRGs, L_TIR > 10^12 Lsun) at z > 0.6. We observe weak clustering of r_0 = 3-6 Mpc/h for almost all of our star forming samples. We find that the clustering and halo mass depend on L_TIR at all redshifts, where galaxies with higher L_TIR (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M_halo ~ 10^12.9 Msun/h. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star forming galaxy samples to their local descendants. Most star forming galaxies at z < 1.0 are the progenitors of L < 2.5L* blue galaxies in the local universe, but star forming galaxies with the highest SFRs (L_TIR >10^11.7 Lsun) at 0.6<z<1.0 are the progenitors of early-type galaxies in denser group environments.
    The Astrophysical Journal 10/2014; 797(2). DOI:10.1088/0004-637X/797/2/125 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion time scale (tdepl) and gas fraction (Mmolgas/M*) with redshift, specific star formation rate (sSFR) and stellar mass (M*) in SFGs. The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO-H2 mass conversion factor varies little within +-0.6 dex of the main sequence line, and less than a factor of 2 throughout this redshift range. We find that tdepl scales as (1+z)^-0.3 *(sSFR)^-0.5, with no M* dependence. The resulting steep redshift dependence of Mmolgas/M* ~ (1+z)^3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR-M* relation. At constant M*, a larger sSFR is due to a combination of an increasing gas fraction and a decreasing depletion time scale. As a result galaxy integrated samples of the Mmolgas-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine Mmolgas with an accuracy of +-0.1 dex in relative terms, and +-0.2 dex including systematic uncertainties.
    The Astrophysical Journal 09/2014; 800(1). DOI:10.1088/0004-637X/800/1/20 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.
    The Astrophysical Journal 07/2014; 793(2). DOI:10.1088/0004-637X/793/2/101 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first quenched galaxies (z>2) are both the most massive, and most compact, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present rest-frame UV spectra of Lyman-break galaxies (LBGs) at z~3 selected to be candidate progenitors of the quenched galaxies at z~2, compared to other LBGs of similar mass and star-formation rate (non-candidates). We find that candidate progenitors have faster outflow velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyman-alpha and interstellar absorption lines in that their Lyman-alpha emission remains strong despite high interstellar absorption, possibly indicating that the neutral HI fraction is patchy, such that Lyman-alpha photons can escape. We detect stronger CIV P-Cygni features (emission and absorption) and HeII emission in candidates, indicative of larger populations of metal-rich Wolf-Rayet stars compared to non-candidates. The faster outflows, broader spread of gas velocity, and Lyman-alpha properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z~2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of their stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally-sized LBGs at these (early) epochs.
    The Astrophysical Journal 07/2014; 800(1). DOI:10.1088/0004-637X/800/1/21 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last ~8 billion years since z=1.2, undergoing a process of "disk settling." For the first time, we study the kinematic evolution of a suite of four state of the art "zoom in" hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking as the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (sigma_g) and increase in ordered rotation (Vrot) with time. The slopes of the relations between both sigma_g and Vrot with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations, and they both have similarly large scatter. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling.
    The Astrophysical Journal 06/2014; 790(2). DOI:10.1088/0004-637X/790/2/89 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of two galaxy overdensities in the HST UDF: a proto-cluster, HUDFJ0332.4-2746.6 at $z = 1.84 \pm 0.01$, and a group, HUDFJ0332.5-2747.3 at $z =1.90 \pm 0.01$. The velocity dispersion of HUDFJ0332.4-2746.6 implies a mass of $M_{200}= (2.2 \pm 1.8) \times 10^{14} M_{\odot}$, consistent with the lack of extended X-ray emission. Neither overdensity shows evidence of a red sequence. About $50\%$ of their members show interactions and/or disturbed morphologies, which are a signature of merger remnants. Most of their morphologically classified ETGs have blue colors and show recent star-formation. These observations reveal for the first time large fractions of spectroscopically confirmed star-forming blue ETGs in proto-clusters at $z\approx 2$. These star-forming ETGs are most likely among the progenitors of the quiescent population in clusters at more recent epochs. Their mass-size relation is consistent with that of passive ETGs in clusters at $z\sim0.7-1.5$. If these galaxies are the progenitors of cluster ETGs at these lower redshifts, their size would evolve according to a similar mass-size relation. It is noteworthy that quiescent ETGs in clusters at $z=1.8-2$ also do not show any significant size evolution over this redshift range, contrary to field ETGs. The ETG fraction of our sample is $\lesssim 40\%$, compared to the typical quiescent ETG fraction of $\approx 80\%$ in cluster cores at $z< 1$. The fraction, masses and colors of the newly discovered ETGs imply that other cluster ETGs will be formed/accreted at later time.
    The Astrophysical Journal 03/2014; 804(2). DOI:10.1088/0004-637X/804/2/117 · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is cumulative evidence showing that, for the most massive galaxies, the fraction of disc-like objects compared to those with spheroidal properties increases with redshift. However, this evolution is thus far based on the surface brightness study of these objects. To explore the consistency of this scenario, it is necessary to measure the dynamical status of these galaxies. With this aim, we have obtained seeing-limited near-infrared integral-field spectra in the H-band for 10 massive galaxies (M_{*}≥ 10^{11} h_{70}^{-2} M_{☉}) at z ̃ 1.4 with SINFONI at the VLT. Our sample is selected by their stellar mass and EW[O II] > 15 Å, to secure their kinematic measurements, but without accounting for any morphological or flux criteria a priori. Through this 3D kinematic spectroscopy analysis, we find that half (i.e. 50 ± 7 per cent) of our galaxies are compatible with being rotationally supported discs, in agreement with previous morphological expectations. This is a factor of approximately 2 higher than what is observed in the present Universe for objects of the same stellar mass. Strikingly, the majority of our sample of massive galaxies show extended and fairly high rotational velocity maps, implying that massive galaxies acquire rapidly rotational support and hence gravitational equilibrium. Our sample also show evidence for ongoing interactions and mergers. Summarizing, massive galaxies at high-z show a significant diversity and must have continued evolution beyond the fading of stellar populations, to become their present-day counterparts.
    Monthly Notices of the Royal Astronomical Society 01/2014; 439(2). DOI:10.1093/mnras/stu034 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ~0.25 deg^2 with ~900 HST orbits spread across 5 fields over 3 years. Within these survey images we discovered 65 supernovae (SN) of all types, out to z~2.5. We classify ~24 of these as Type Ia SN (SN Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of 6 SN). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z=2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SN that exploded when the universe was only ~3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SN Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SNIa fraction is f=0.48 +0.08 -0.09 (stat) +0.04 -0.13 (syst), consistent with a delay time distribution that follows a simple t^{-1} power law for all times t>40 Myr. However, a mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. When the rate measurements from HST surveys are examined in isolation, the rarity of SN Ia detections at z>1.5 hints that prompt progenitors in the early universe may in fact be relatively rare, accounting for as little as ~5% of all SN Ia explosions - though further analysis and larger samples will be needed to examine that suggestion.
    The Astronomical Journal 01/2014; 148(1). DOI:10.1088/0004-6256/148/1/13 · 4.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Based on high-resolution, spatially resolved data of 10 z ~ 2 star-forming galaxies from the SINS/zC-SINF survey and LUCI data for 12 additional galaxies, we probe the excitation properties of high-z galaxies and the impact of active galactic nuclei (AGNs), shocks, and photoionization. We explore how these spatially resolved line ratios can inform our interpretation of integrated emission line ratios obtained at high redshift. Many of our galaxies fall in the "composite" region of the z ~ 0 [N II]/Hα versus [O III]/Hβ diagnostic (BPT) diagram, between star-forming galaxies and those with AGNs. Based on our resolved measurements, we find that some of these galaxies likely host an AGN, while others appear to be affected by the presence of shocks possibly caused by an outflow or from an enhanced ionization parameter as compared with H II regions in normal, local star-forming galaxies. We find that the Mass-Excitation (MEx) diagnostic, which separates purely star-forming and AGN hosting local galaxies in the [O III]/Hβ versus stellar mass plane, does not properly separate z ~ 2 galaxies classified according to the BPT diagram. However, if we shift the galaxies based on the offset between the local and z ~ 2 mass-metallicity relation (i.e., to the mass they would have at z ~ 0 with the same metallicity), we find better agreement between the MEx and BPT diagnostics. Finally, we find that metallicity calibrations based on [N II]/Hα are more biased by shocks and AGNs at high-z than the [O III]/Hβ/[N II]/Hα calibration. Based on observations at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 073.B-9018, 076.A-0527, 079.A-0341, 080.A-0330, 080.A-0339, 080.A-0635, 083.A-0781,084.A-0853, 087.A-0081, 091.A.-0126) and at the Large Binocular Telescope (LBT) on Mt. Graham in Arizona.
    The Astrophysical Journal 01/2014; 781(1):21-. DOI:10.1088/0004-637X/781/1/21 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H<24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies up to z<4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, $k$-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed -- GOODS-S. The wide area coverage spanning the full field includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the GUI that we developed to classify galaxies. We find that the level of agreement among classifiers is good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.
  • Raymond Simons · S. A. Kassin · B. J. Weiner · J. C. Lee
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the stellar mass Tully Fisher relation (TFR; rotation velocity versus stellar mass) without pre-selecting morphologies for a sample of star forming galaxies at redshifts 0.1 < z < 0.375 from Kassin et al. (2007). Spectra are from Keck/DEIMOS (DEEP2 Survey) and images are from Hubble (AEGIS and CANDELS Surveys). In particular, we study the role morphology plays in the TFR, using qualitative and quantitative measures. Kassin et al found that the TFR at these redshifts is relatively tight for galaxies with stellar masses log M* > 9.5, but has significant scatter to low rotation velocities for less massive galaxies which are disturbed/compact. We show quantitatively that the low mass galaxies log M* < 9.5 which scatter from the TFR at these redshifts are compact and asymmetric. We perform a careful review of literature on the TFR at log M* < 9.5 and find that the vast majority of galaxies have quantitative morphologies indicating disks. We argue that a sample without pre-selection reveals that a significant population of star forming galaxies at these masses (locally and in our relatively low redshift range) are actually compact and asymmetric with large components of disordered motions. It is unclear whether the disorder in these low redshift systems is a result of external dynamic interactions (tidal forces, merger history) or if these galaxies are in a less evolved state.

Publication Stats

8k Citations
996.89 Total Impact Points

Institutions

  • 2007–2014
    • The University of Arizona
      • Department of Astronomy
      Tucson, Arizona, United States
  • 2013
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
    • Tel Aviv University
      • Department of Physics and Astronomy
      Tell Afif, Tel Aviv, Israel
    • Siena College
      • Department Physics and Astronomy
      Troy, New York, United States
    • American Museum of Natural History
      New York City, New York, United States
  • 2007–2009
    • University of Maryland, College Park
      • Department of Astronomy
      College Park, MD, United States
  • 2008
    • University of California Observatories
      Santa Cruz, California, United States
    • University of Pittsburgh
      • Physics and Astronomy
      Pittsburgh, Pennsylvania, United States
  • 2002–2008
    • University of California, Santa Cruz
      • Department of Astronomy and Astrophysics
      Santa Cruz, CA, United States
  • 2006
    • University of Virginia
      • Department of Astronomy
      Charlottesville, Virginia, United States
    • University of California, Los Angeles
      • Department of Physics and Astronomy
      Los Angeles, California, United States
    • University of Mary
      Bismarck, North Dakota, United States
  • 2003
    • University of California, Berkeley
      Berkeley, California, United States
  • 1999–2000
    • Carnegie Institution for Science
      Washington, West Virginia, United States
  • 1996
    • Columbia College
      Columbia, South Carolina, United States