J. J. Drake

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States

Are you J. J. Drake?

Claim your profile

Publications (490)1365.76 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a catalogue of 247 photometrically and spectroscopically confirmed fainter classical Be stars (13 < r < 16) in the direction of the Perseus Arm of the Milky Way (-1 < b < +4, 120 < l < 140). The catalogue consists of 181 IPHAS-selected new classical Be stars, in addition to 66 objects that were studied by Raddi et al. (2013) more closely, and 3 stars identified as classical Be stars in earlier work. This study more than doubles the number known in the region. Photometry spanning 0.6 to 5 micron, spectral types, and interstellar reddenings are given for each object. The spectral types were determined from low-resolution spectra (lambda / Delta-lambda ~ 800-2000), to a precision of 1-3 subtypes. The interstellar reddenings are derived from the (r - i) colour, using a method that corrects for circumstellar disc emission. The colour excesses obtained range from E(B-V) = 0.3 up to 1.6 - a distribution that modestly extends the range reported in the literature for Perseus-Arm open clusters. For around half the sample, the reddenings obtained are compatible with measures of the total sightline Galactic extinction. Many of these are likely to lie well beyond the Perseus Arm.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cygnus OB2 is the most massive association within 2kpc from the Sun, hosting hundreds of massive stars, thousands of young low mass members, and some sights of active star formation in the surrounding cloud. Recently, 10 photoevaporating proplyd-like objects with tadpole-shaped morphology were discovered in the outskirts of the OB association, approximately 6-14pc away from its center. The classification of these objects is ambiguous, being either evaporating residuals of the parental cloud which are hosting a protostar inside, or disk-bearing stars with an evaporating disk, such as the evaporating proplyds observed in the Trapezium Cluster in Orion. In this paper we present a study based on low resolution optical spectroscopic observations made with the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS), mounted on the 10.4m Gran Telescopio CANARIAS (GTC), of two of these protostars. The spectrum of one of the objects shows evidence of accretion but not of outflows. In the latter object, the spectra show several emission lines indicating the presence of an actively accreting disk with outflow. We present estimates of the mass loss rate and the accretion rate from the disk, showing that the former exceeds the latter as observed in other known objects with evaporating disks. We also show evidence of a strong variability in the integrated flux observed in these objects, as well as in the accretion and outflow diagnostics.
    The Astrophysical Journal 09/2014; 793(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Cygnus OB2 association is the largest concentration of young and massive stars within 2 kpc of the Sun, including an estimated 65 O-type stars and hundreds of OB stars. The Chandra Cygnus OB2 Legacy Survey is a large imaging program undertaken with the Advanced CCD Imaging Spectrometer onboard the Chandra X-ray Observatory. The survey has imaged the central 0.5 deg^2 of the Cyg OB2 association with an effective exposure of 120ks and an outer 0.35 deg^2 area with an exposure of 60ks. Here we describe the survey design and observations, the data reduction and source detection, and present a catalog of 8,000 X-ray point sources. The survey design employs a grid of 36 heavily (~50%) overlapping pointings, a method that overcomes Chandra's low off-axis sensitivity and produces a highly uniform exposure over the inner 0.5 deg^2. The full X-ray catalog is described here and is made available online.
    08/2014;
  • Source
    Cecilia Garraffo, Jeremy J. Drake, Ofer Cohen
    [Show abstract] [Hide abstract]
    ABSTRACT: Angular Momentum Loss is important for understanding astrophysical phenomena such as stellar rotation, magnetic activity, close binaries, and cataclysmic variables. Magnetic breaking is the dominant mechanism in the spin down of young late-type stars. We have studied angular momentum loss as a function of stellar magnetic activity. We argue that the complexity of the field and its latitudinal distribution are crucial for angular momentum loss rates. In this work we discuss how angular momentum is modulated by magnetic cycles, and how stellar spin down is not just a simple function of large scale magnetic field strength.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The INT/WFC Photometric H-Alpha Survey of the Northern Galactic Plane (IPHAS) is a 1800 square degrees imaging survey covering Galactic latitudes |b| < 5 deg and longitudes l = 30 to 215 deg in the r, i and H\alpha\ filters using the Wide Field Camera (WFC) on the 2.5-metre Isaac Newton Telescope (INT) in La Palma. We present the first quality-controlled and globally-calibrated source catalogue derived from the survey, providing single-epoch photometry for 219 million unique sources across 92% of the footprint. The observations were carried out between 2003 and 2012 at a median seeing of 1.1 arcsec (sampled at 0.33 arcsec/pixel) and to a mean 5\sigma-depth of 21.2 (r), 20.0 (i) and 20.3 (H\alpha) in the Vega magnitude system. We explain the data reduction and quality control procedures, describe and test the global re-calibration, and detail the construction of the new catalogue. We show that the new calibration is accurate to 0.03 mag (rms) and recommend a series of quality criteria to select the most reliable data from the catalogue. Finally, we demonstrate the ability of the catalogue's unique (r-H\alpha, r-i) diagram to (1) characterise stellar populations and extinction regimes towards different Galactic sightlines and (2) select H\alpha\ emission-line objects. IPHAS is the first survey to offer comprehensive CCD photometry of point sources across the Galactic Plane at visible wavelengths, providing the much-needed counterpart to recent infrared surveys.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We hope to better estimate the rate of very strong (Carrington event-type) flares in the Sun by studying flares of stars in several open clusters with well determined ages using Kepler data. Here we derive white light flare distributions for a sample of near-solar-mass (G0-G5) dwarfs in NGC 6811 (age ~ 1 Gyr) and NGC 6819 2.5 Gyr). We compare these with solar white light flare rates and, by estimating X-ray emission from the same flares using a solar-based relationship, we compare the Kepler results to other solar and stellar X-ray flare data. We explore implications of our results for the rates of large solar flares. This research was supported by Kepler grant NNX13AC29G.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic (MHD) models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvenic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvenic sectors, while no bow shock forms in the sub-Alfvenic sectors. The planets reside most of the time in the sub-Alfvenic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the planetary interaction with the stellar wind. For the steady-state solution, the heating is about 0.1-3\% of the total incoming stellar irradiation, and it is enhanced by 50\% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport.
    The Astrophysical Journal 05/2014; 790(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nature of the mechanisms apparently driving X-rays from intermediate mass stars lacking strong convection zones or massive winds remains poorly understood, and the possible role of hidden, lower mass close companions is still unclear. A 20ks Chandra HRC-I observation of HR 4796A, an 8 Myr old main sequence A0 star devoid of close stellar companions, has been used to search for a signature or remnant of magnetic activity from the Herbig Ae phase. X-rays were not detected and the X-ray luminosity upper limit was L_X =< 1.3x10^27 erg/s. The result is discussed in the context of various scenarios for generating magnetic activity, including rotational shear and subsurface convection. A dynamo driven by natal differential rotation is unlikely to produce observable X rays, chiefly because of the difficulty in getting the dissipated energy up to the surface of the star. A subsurface convection layer produced by the ionisation of helium could host a dynamo that should be effective throughout the main-sequence but can only produce X-ray luminosities of order 10^25 erg/s. This luminosity lies only moderately below the current detection limit for Vega. Our study supports the idea that X-ray production in Herbig Ae/Be stars is linked largely to the accretion process rather than the properties of the underlying star, and that early A stars generally decline in X-ray luminosity at least 100,000 fold in only a few million years.
    03/2014; 786(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abridged. Here we report on the X-ray activity of the primary star, HD189733 A, using a new XMM-Newton observation and a comparison with the previous X-ray observations. The spectrum in the quiescent intervals is described by two temperatures at 0.2 keV and 0.7 keV, while during the flares a third component at 0.9 keV is detected. We obtain estimates of the electron density in the range $n_e = 1.6 - 13 \times 10^{10}$ cm$^{-3}$ and thus the corona of HD189733 A appears denser than the solar one. {For the third time, we observe a large flare that occurred just after the eclipse of the planet. Together with the flares observed in 2009 and 2011, the events are restricted to a small planetary phase range of $\phi = 0.55-0.65$. Although we do not find conclusive evidence of a significant excess of flares after the secondary transits, we suggest that the planet might trigger such flares when it passes close to locally high magnetic field of the underlying star at particular combinations of stellar rotational phases and orbital planetary phases. For the most recent flares, a wavelet analysis of the light curve suggests a loop of length of four stellar radii at the location of the bright flare, and a local magnetic field of order of 40-100 G, in agreement with the global field measured in other studies. The loop size suggests an interaction of magnetic nature between planet and star, separated by only $\sim8 R_*$. We also detect the stellar companion (HD 189733 B, $\sim12"$ from the primary star) in this XMM observation. Its very low X-ray luminosity ($L_X = 3.4\times 10^{26}$ erg s$^{-1}$) confirms the old age of this star and of the binary system. The high activity of the primary star is best explained by a transfer of angular momentum from the planet to the star.
    The Astrophysical Journal 03/2014; 785(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the F_x ~ 10^-13 to 10^-11 erg cm^-2 s^-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multi-wavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3' of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the F_x ~ 10^-13 to 10^-11 erg cm^-2 s^-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding-wind binaries, X-ray binaries, and magnetars. There is also a fifth population that is still unidentified but, based on its X-ray and infrared properties, likely comprise partly of Galactic sources and partly of active galactic nuclei.
    03/2014; 212(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The VST Photometric Halpha Survey of the Southern Galactic Plane and Bulge (VPHAS+) is surveying the southern Milky Way in u, g, r, i and Halpha at 1 arcsec angular resolution. Its footprint spans the Galactic latitude range -5 < b < +5 at all longitudes south of the celestial equator. Extensions around the Galactic Centre to Galactic latitudes +/-10 bring in much of the Galactic Bulge. This ESO public survey, begun on 28th December 2011, reaches down to 20th magnitude (10-sigma) and will provide single-epoch digital optical photometry for around 300 million stars. The observing strategy and data pipelining is described, and an appraisal of the segmented narrowband Halpha filter in use is presented. Using model atmospheres and library spectra, we compute main-sequence (u - g), (g - r), (r - i) and (r - Halpha) stellar colours in the Vega system. We report on a preliminary validation of the photometry using test data obtained from two pointings overlapping the Sloan Digital Sky Survey. An example of the (u - g, g - r) and (r - Halpha, r - i) diagrams for a full VPHAS+ survey field is given. Attention is drawn to the opportunities for studies of compact nebulae and nebular morphologies that arise from the image quality being achieved. The value of the u band as the means to identify planetary-nebula central stars is demonstrated by the discovery of the central star of NGC 2899 in survey data. Thanks to its excellent imaging performance, the VST/OmegaCam combination used by this survey is a perfect vehicle for automated searches for reddened early-type stars, and will allow the discovery and analysis of compact binaries, white dwarfs and transient sources.
    Monthly Notices of the Royal Astronomical Society 02/2014; 440(3). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the analysis of the Chandra-ACIS data of O, B and WR stars in the young association Cyg OB2. X-ray spectra of 49 O-stars, 54 B-stars and 3 WR-stars are analyzed and for the brighter sources, the epoch dependence of the X-ray fluxes is investigated. The O-stars in Cyg\,OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: log(Lx/Lbol) = -7.2 +/- 0.2. This relation is in excellent agreement with the one previously derived for the Carina OB1 association. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between Lx and Lbol. Out of the three WR stars in Cyg OB2, probably only WR144 is itself responsible for the observed level of X-ray emission, at a very low log(Lx/Lbol) = -8.8 +/- 0.2. The X-ray emission of the other two WR-stars (WR145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the mass accretion rate implied by published surface abundances of Si and C in the white dwarf component of the 3.62 hr period pre-cataclysmic binary and planet host candidate QS Vir (DA+M2-4). Diffusion timescales for gravitational settling imply $\dot{M} \sim 10^{-16}M_\odot$ yr$^{-1}$ for the 1999 epoch of the observations, which is three orders of magnitude lower than measured from a 2006 {\it XMM-Newton} observation. This is the first time that large accretion rate variations have been seen in a detached pre-CV. A third body in a 14 yr eccentric orbit suggested in a recent eclipse timing study is too distant to perturb the central binary sufficiently to influence accretion. A hypothetical coronal mass ejection just prior to the {\it XMM-Newton} observation might explain the higher accretion rate, but the implied size and frequency of such events appear too great. We suggest accretion is most likely modulated by a magnetic cycle on the secondary acting as a wind "accretion switch", a mechanism that can be tested by X-ray and ultraviolet monitoring. If so, QS Vir and similar pre-CVs could provide powerful insights into hitherto inscrutable cataclysmic variable and M dwarf magnetospheres, and mass and angular momentum loss rates.
    Monthly Notices of the Royal Astronomical Society 01/2014; 437(4). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extensive X-ray and extreme ultraviolet (EUV) photometric observations of the eclipsing RS CVn system AR Lac were obtained over the years 1997 to 2013 with the Chandra X-ray Observatory Extreme Ultraviolet Explorer. During primary eclipse, HRC count rates decrease by ~40%. A similar minimum is seen during one primary eclipse observed by EUVE but not in others owing to intrinsic source variability. Little evidence for secondary eclipses is present in either the X-ray or EUV data, reminiscent of earlier X-ray and EUV observations. Primary eclipses allow us to estimate the extent of a spherically symmetric corona on the primary G star of about 1.3Rsun, or 0.86Rstar, and indicate the G star is likely brighter than the K component by a factor of 2-5. Brightness changes not attributable to eclipses appear to be dominated by stochastic variability and are generally non-repeating. X-ray and EUV light curves cannot therefore be reliably used to reconstruct the spatial distribution of emission assuming only eclipses and rotational modulation are at work. Moderate flaring is observed, where count rates increase by up to a factor of three above quiescence. Combined with older ASCA, Einstein, EXOSAT, ROSAT and Beppo-SAX observations, the data show that the level of quiescent coronal emission at X-ray wavelengths has remained remarkably constant over 33 years, with no sign of variation due to magnetic cycles. Variations in base level X-ray emission seen by Chandra over 13 years are only ~10%, while variations back to pioneering Einstein observations in 1980 amount to a maximum of 45% and more typically about 15%.
    01/2014; 783(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strong flares on the Sun are accompanied by intense ionizing radiation (X-rays, far UV) and are often associated with coronal mass ejections (CMEs), which can be hazardous to astronauts, and infrastructure such as satellites and electrical systems. The rates of the largest flare events are, however, poorly known. By taking advantage of the exquisite precision of Kepler photometry, we derive white light flare distributions for a sample of near-solar-mass (G1-G5) dwarfs in NGC 6811 (age ~ 1 Gyr). Using a solar-based relationship, we estimate the X-ray emission from these flares in order to compare the results to other solar and stellar X-ray flare data. We also take a first look at some stars of different masses, to study the mass dependence of flaring at fixed age, and explore the implications of our results for the rates of the largest flaring events on the Sun. This work was supported by Kepler grants NNX11AC82G and NNX13AC29G and NASA HGI grant NNX10AF29G.
    01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Star formation in massive clusters proceeds under the influence of the intense ionizing flux emitted by OB stars. Among the massive star forming regions in our Galaxy, Cygnus OB2 is the best available target to study these processes given its relative proximity and large content of OB and low-mass stars. We present our preliminary results on the photoevaporation of circumstellar disks in Cyg OB2 induced by the UV radiation emitted by OB stars.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the Suzaku detection of a rapid flare-like X-ray flux amplification early in the development of the classical nova V2672 Ophiuchi. Two target-of-opportunity ~25 ks X-ray observations were made 12 and 22 days after the outburst. The flux amplification was found in the latter half of day 12. Time-sliced spectra are characterized by a growing supersoft excess with edge-like structures and a relatively stable optically-thin thermal component with Ka emission lines from highly ionized Si. The observed spectral evolution is consistent with a model that has a time development of circumstellar absorption, for which we obtain the decline rate of ~10-40 % in a time scale of 0.2 d on day 12. Such a rapid drop of absorption and short-term flux variability on day 12 suggest inhomogeneous ejecta with dense blobs/holes in the line of sight. Then on day 22 the fluxes of both supersoft and thin-thermal plasma components become significantly fainter. Based on the serendipitous results we discuss the nature of this source in the context of both short- and long-term X-ray behavior.
    Publications- Astronomical Society of Japan 11/2013; 66(2). · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine substructure and mass segregation in the massive OB association Cygnus OB2 to better understand its initial conditions. Using a well understood Chandra X-ray selected sample of young stars we find that Cyg OB2 exhibits considerable physical substructure and has no evidence for mass segregation, both indications that the association is not dynamically evolved. Combined with previous kinematical studies we conclude that Cyg OB2 is dynamically very young, and what we observe now is very close to its initial conditions: Cyg OB2 formed as a highly substructured, unbound association with a low volume density (< 100 stars/pc^3). This is inconsistent with the idea that all stars form in dense, compact clusters. The massive stars in Cyg OB2 show no evidence for having formed particularly close to one another, nor in regions of higher than average density. Since Cyg OB2 contains stars as massive as ~100 Mo this result suggests that very massive stars can be born in relatively low-density environments. This would imply that the massive stars in Cyg OB2 did not form by competitive accretion, or by mergers.
    Monthly Notices of the Royal Astronomical Society 11/2013; 438(1). · 5.52 Impact Factor
  • Source
    Ofer Cohen, Jeremy J. Drake
    [Show abstract] [Hide abstract]
    ABSTRACT: Stellar winds are believed to be the dominant factor in spin down of stars over time. However, stellar winds of solar analogs are poorly constrained due to the challenges in observing them. A great improvement has been made in the last decade in our understanding of the mechanisms responsible for the acceleration of the solar wind and in the development of numerical models for solar and stellar winds. In this paper, we present a grid of Magnetohydrodynamic (MHD) models to study and quantify the values of stellar mass-loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass-loss rate of stars with thermally-driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the "solar dipole" case and a real case based on solar observations that overestimates the actual solar mass-loss rate by a factor of 3. This implies that the model for stellar fields might require a further investigation with higher complexity which might include the use of a filling factor for active regions, as well as the distribution of the strength of the small-scale fields. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure $B^2$. We also find that the mass-loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss vs. poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time.
    09/2013; 783(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present H\alpha images of an ionized nebula surrounding the M2-5Ia red supergiant (RSG) W26 in the massive star cluster Westerlund 1. The nebula consists of a circumstellar shell or ring ~0.1pc in diameter and a triangular nebula ~0.2pc from the star that in high-resolution Hubble Space Telescope images shows a complex filamentary structure. The excitation mechanism of both regions is unclear since RSGs are too cool to produce ionizing photons and we consider various possibilities. The presence of the nebula, high stellar luminosity and spectral variability suggest that W26 is a highly evolved RSG experiencing extreme levels of mass-loss. As the only known example of an ionized nebula surrounding a RSG W26 deserves further attention to improve our understanding of the final evolutionary stages of massive stars.
    Monthly Notices of the Royal Astronomical Society 09/2013; · 5.52 Impact Factor

Publication Stats

4k Citations
1,365.76 Total Impact Points

Institutions

  • 1925–2014
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 1993–2011
    • University of Leicester
      • Department of Physics and Astronomy
      Leiscester, England, United Kingdom
    • Villanova University
      Norristown, Pennsylvania, United States
    • The Ohio State University
      • Department of Astronomy
      Columbus, OH, United States
  • 2009
    • Tokyo Metropolitan University
      Edo, Tōkyō, Japan
  • 1994–2009
    • University of California, Berkeley
      • Space Sciences Laboratory
      Berkeley, California, United States
  • 2007
    • Harvard University
      • Department of Statistics
      Cambridge, MA, United States
  • 2005
    • University of Zurich
      • Institut für Theoretische Physik
      Zürich, Zurich, Switzerland
  • 2004
    • University of Padova
      Padua, Veneto, Italy
  • 2001
    • Arizona State University
      • School of Earth and Space Exploration
      Phoenix, Arizona, United States
  • 1999
    • Università degli studi di Palermo
      • Dipartimento di Fisica e Chimica
      Palermo, Sicily, Italy