W. Benbow

Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States

Are you W. Benbow?

Claim your profile

Publications (272)948.29 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the results of two coordinated multiwavelength campaigns that focused on the blazar Markarian 421 during its 2006 and 2008 outbursts. These campaigns obtained UV and X-ray data us-ing the XMM-Newton satellite, while the gamma-ray data were obtained utilizing three imaging atmo-spheric Cerenkov telescopes, the Whipple 10 m telescope and VERITAS, both based in Arizona, as well as the MAGIC telescope, based on La Palma in the Canary Islands. The coordinated effort between the gamma-ray groups allowed for truly simultaneous data in UV/X-ray/gamma-ray wavelengths during a sig-nificant portion of the XMM-Newton observations. This simultaneous coverage allowed for a reliable search for correlations between UV, X-ray, and gamma-ray variability over the course of the observations. In-vestigations of spectral hysteresis and modeling of the spectral energy distributions are also presented.
    The Astrophysical Journal J. Moldón J. Ninkovic E. Prandini N. Puchades I. Reichardt J. Rico T. Y. Saito V. Scalzotto S. N. Shore N. Sidro A. Sierpowska-Bartosik J. Sitarek J. Zapatero. 03/2037; 703455657454052443847(35):169-178.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the first completely simultaneous observation of a gamma-ray burst (GRB) using an array of Imaging Atmospheric Cherenkov Telescopes, which is sensitive to photons in the very high energy (VHE) γ -ray range (100 GeV). On 2006 June 2, the Swift Burst Alert Telescope (BAT) registered an unusually soft γ -ray burst (GRB 060602B). The burst position was under observation using the High Energy Stereoscopic System (HESS) at the time the burst occurred. Data were taken before, during, and after the burst. A total of 5 hr of observations were obtained during the night of 2006 June 2–3, and five additional hours were obtained over the next three nights. No VHE γ -ray signal was found during the period covered by the HESS observations. The 99% confidence level flux upper limit (> 1 TeV) for the prompt phase (9 s) of GRB 060602B is 2.9 × 10 −9 erg cm −2 s −1 . Due to the very soft BAT spectrum of the burst compared with other Swift GRBs and its proximity to the Galactic center, the burst is likely associated with a Galactic X-ray burster, although the possibility of it being a cosmological GRB cannot be ruled out. We discuss the implications of our flux limits in the context of these two bursting scenarios.
    The Astrophysical Journal. 08/2015; 690:1068-1073.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on deep observations of the extended TeV gamma-ray source MGRO J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory. Previously, the TeV emission has been attributed to the pulsar wind nebula (PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a significance level of 14 standard deviations (14 sigma) and measure a photon index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended, covering the region near PSR J1907+0602 and also extending towards SNR G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to other TeV PWNe of similar age in which the TeV spectrum softens with distance from the pulsar, the TeV spectrum measured near the pulsar location is consistent with that measured at a position near the rim of G40.5--0.5, 0.33 degrees away.
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of $z\ge0.6035$, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hours of VERITAS observations from three years, a multiwavelength light curve and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1$\pm0.3$)$\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02$\pm0.08$)$\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV. The measured differential very high energy (VHE; $E\ge100$ GeV) spectral indices are $\Gamma=$3.8$\pm$0.3, 4.3$\pm$0.6 and 4.5$\pm$0.2 in 2009, 2011 and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than $\tau=2$, where it is postulated that any variability would be small and occur on longer than year timescales if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E $>$ 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations ($\sigma$) and is found to be extended and asymmetric with a width of 9.5$^{\prime}$$\pm$1.2$^{\prime}$ along the major axis and 4.0$^{\prime}$$\pm$0.5$^{\prime}$ along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 $\pm$ 0.14$_{stat}$ $\pm$ 0.21$_{sys}$ and a normalization of (9.5 $\pm$ 1.6$_{stat}$ $\pm$ 2.2$_{sys}$) $\times$ 10$^{-13}$TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula (PWN) interpretation.
    The Astrophysical Journal 01/2014; 783. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high-frequency-peaked BL Lacertae object 1ES 0229+200 is a relatively distant (z = 0.1396), hard-spectrum (Gamma ~ 2.5), very-high-energy-emitting (E > 100 GeV) gamma-ray blazar. Very-high-energy measurements of this active galactic nucleus have been used to place constraints on the intensity of the extragalactic background light and the intergalactic magnetic field. A multi-wavelength study of this object centered around very-high-energy observations by VERITAS is presented. This study obtained, over a period of three years, an 11.7 standard deviation detection and an average integral flux F(E>300 GeV) = (23.3 +- 2.8_stat +- 5.8_sys) x 10^-9 photons m^-2 s^-1, or 1.7% of the Crab Nebula's flux (assuming the Crab Nebula spectrum measured by H.E.S.S). Supporting observations from Swift and RXTE are analyzed. The Swift observations are combined with previously published Fermi observations and the very-high-energy measurements to produce an overall spectral energy distribution which is then modeled assuming one-zone synchrotron-self-Compton emission. The chi^2 probability of the TeV flux being constant is 1.6%. This, when considered in combination with measured variability in the X-ray band, and the demonstrated variability of many TeV blazars, suggests that the use of blazars such as 1ES 0229+200 for intergalactic magnetic field studies may not be straightforward and challenges models that attribute hard TeV spectra to secondary gamma-ray production along the line of sight.
    The Astrophysical Journal 12/2013; 782. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories both in the northern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the VERITAS and H.E.S.S. Cherenkov Telescopes and the X-ray Satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The VHE emission is found to be variable, and is correlated with that at X-ray energies. An orbital period of $315 ^{+6}_{-4}$ days is derived from the X-ray data set, which is compatible with previous results, $P = (321 \pm 5$) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant ($> 6.5 \sigma$) detection at orbital phases 0.6--0.9. The obtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.
    The Astrophysical Journal 11/2013; 780. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV to 30 TeV. The effective exposure time amounts to a total of about 44 hours, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.
    The Astrophysical Journal 11/2013; 779. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The variability of the blazar Markarian 421 in TeV gamma rays over a 14-year time period has been explored with the Whipple 10 m telescope. It is shown that the dynamic range of its flux variations is large and similar to that in X-rays. A correlation between the X-ray and TeV energy bands is observed during some bright flares and when the complete data sets are binned on long timescales. The main database consists of 878.4 hours of observation with the Whipple telescope, spread over 783 nights. The peak energy response of the telescope was 400 GeV with 20% uncertainty. This is the largest database of any TeV-emitting active galactic nucleus (AGN) and hence was used to explore the variability profile of Markarian 421. The time-averaged flux from Markarian 421 over this period was 0.446$\pm$0.008 Crab flux units. The flux exceeded 10 Crab flux units on three separate occasions. For the 2000-2001 season the average flux reached 1.86 Crab units, while in the 1996-1997 season the average flux was only 0.23 Crab units.
    Astroparticle Physics 10/2013; 54:1-10. · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a multiwavelength observational campaign on the TeV binary system LS I +61 303 with the VERITAS telescope array (>200 GeV), Fermi-LAT (0.3-300 GeV), and Swift-XRT (2-10 keV). The data were taken from December 2011 through January 2012 and show a strong detection in all three wavebands. During this period VERITAS obtained 24.9 hours of quality selected livetime data in which LS I +61 303 was detected at a statistical sig- nificance of 11.9 sigma. These TeV observations show evidence for nightly variability in the TeV regime at a post-trial significance of 3.6 sigma. The combination of the simultaneously obtained TeV and X-ray fluxes do not demonstrate any evidence for a correlation between emission in the two bands. For the first time since the launch of the Fermi satellite in 2008, this TeV detection allows the construction of a detailed MeV-TeV spectral energy distribution from LS I +61 303. This spectrum shows a distinct cutoff in emission near 4 GeV, with emission seen by the VERITAS observations following a simple power-law above 200 GeV. This feature in the spectrum of LS I +61 303, obtained from overlapping observations with Fermi-LAT and VERITAS, may indicate that there are two distinct populations of accelerated particles producing the GeV and TeV emission.
    The Astrophysical Journal 10/2013; 779. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on VERITAS observations of the BL Lac object B2 1215+30 between 2008 and 2012. During this period, the source was detected at very high energies (VHE; E > 100 GeV) by VERITAS with a significance of $8.9\sigma$ and showed clear variability on time scales larger than months. In 2011, the source was found to be in a relatively bright state and a power-law fit to the differential photon spectrum yields a spectral index of $3.6 \pm 0.4_{\mathrm{stat}} \pm 0.3_{\mathrm{syst}}$ with an integral flux above 200 GeV of $(8.0 \pm 0.9_{\mathrm{stat}} \pm 3.2_{\mathrm{syst}}) \times 10^{-12}\, \mathrm{cm}^{-2} \mathrm{s}^{-1}$. No short term variability could be detected during the bright state in 2011. Multi-wavelength data were obtained contemporaneous with the VERITAS observations in 2011 and cover optical (Super-LOTIS, MDM, Swift-UVOT), X-ray (Swift-XRT), and gamma-ray (Fermi-LAT) frequencies. These were used to construct the spectral energy distribution (SED) of B2 1215+30. A one-zone leptonic model is used to model the blazar emission and the results are compared to those of MAGIC from early 2011 and other VERITAS-detected blazars. The SED can be well reproduced with model parameters typical for VHE-detected BL Lacs.
    The Astrophysical Journal 10/2013; 779. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In March 2013, a flaring episode from the Crab Nebula lasting ~2 weeks was detected by the Fermi-LAT (Large Area Telescope on board the Fermi Gamma-ray Space Telescope). VERITAS provides simultaneous observations throughout this period. During the flare, the Fermi-LAT detected a 20-fold increase in flux above the average synchrotron flux >100 MeV seen from the Crab Nebula. Simultaneous measurements with VERITAS are consistent with the non-variable long-term average Crab Nebula flux at TeV energies. Assuming a linear correlation between the very-high-energy flux change >1 TeV and the flux change seen in the Fermi-LAT band >100 MeV during the period of simultaneous observations, the linear correlation factor can be constrained to be at most 8.6 * 10^-3 with 95% confidence.
    The Astrophysical Journal Letters 09/2013; 781. · 6.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Compilation of papers contributed by the VERITAS Collaboration to the 33rd International Cosmic Ray Conference, held 2-9 July, 2013, in Rio de Janeiro, Brazil.
    08/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov telescope array. These observations were motivated by the discovery of a cluster of >30GeV photons in the first year of Fermi-LAT observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of 1.93 +/- 0.13_stat +/- 0.78_sys 10^-11 cm-2 s-1 above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to ~0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly-discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z=0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.
    The Astrophysical Journal 08/2013; 776. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (sigma) significance in 7.6 hours of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan gamma-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of order >~2 in the HE (E>1 MeV) and VHE (E>100 GeV) gamma-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10m telescope light curves.
    The Astrophysical Journal 07/2013; 775(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of an unidentified, extended source of very-high-energy (VHE) gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hours of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23^{\circ} \pm 0.03^{\circ} (stat)+0.04^{\circ}_{-0.02}^{\circ}(sys) and its spectrum is well-characterized by a differential power law (dN/dE = N_0 \times (E/TeV)^{-\Gamma}) with a photon index of {\Gamma} = 2.37 \pm 0.14 (stat) \pm 0.20 (sys) and a flux normalization of N0 = 1.5 \pm 0.2 (stat) \pm 0.4(sys) \times 10^-12 ph TeV^{-1} cm^{-2} s^{-1}. This yields an integral flux of 5.2 \pm 0.8 (stat) \pm 1.4 (sys) \times 10^-12 ph cm^{-2} s^{-1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the supernova remnant shock.
    The Astrophysical Journal 06/2013; 770(2):7. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: Our aim is to study the very high energy (VHE; E>100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods: VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results: A strong VHE signal, ~17σ total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, Γ = 3.20± 0.16_stat± 0.10_syst. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓX ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions: The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005.
    Astronomy and Astrophysics 05/2013; 511:52. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of very high energy gamma- ray emission from the intermediate- frequency- peaked BL Lacertae object W Comae (z = 0.102) by VERITAS. The source was observed between 2008 January and April. A strong outburst of gamma-ray emission was measured in the middle of March, lasting for only 4 days. The energy spectrum measured during the two highest flare nights is fit by a power law and is found to be very steep, with a differential photon spectral index of Gamma = 3.81 +/- 0.35(stat) +/- 0.34(syst). The integral photon flux above 200 GeV during those two nights corresponds to roughly 9% of the flux from the Crab Nebula. Quasi-simultaneous Swift observations at X-ray energies were triggered by the VERITAS observations. The spectral energy distribution of the flare data can be described by synchrotron self-Compton (SSC) or external Compton (EC) leptonic jet models.
    The Astrophysical Journal Letters 05/2013; 684:L73. · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer excellent conditions for efficient particle acceleration in internal and external shocks, turbulence, and magnetic reconnection events. The jets as well as particle accelerating regions close to the supermassive black holes (hereafter SMBH) at the intersection of plasma inflows and outflows, can produce readily detectable very high energy gamma-ray emission. As of now, more than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the present ground-based gamma-ray telescopes, which represents more than one third of the cosmic sources detected so far in the VHE gamma-ray regime. The future Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the VHE range by about one order of magnitude, shedding new light on AGN population studies, and AGN classification and unification schemes. CTA will be a unique tool to scrutinize the extreme high-energy tail of accelerated particles in SMBH environments, to revisit the central engines and their associated relativistic jets, and to study the particle acceleration and emission mechanisms, particularly exploring the missing link between accretion physics, SMBH magnetospheres and jet formation. Monitoring of distant AGN will be an extremely rewarding observing program which will inform us about the inner workings and evolution of AGN. Furthermore these AGN are bright beacons of gamma-rays which will allow us to constrain the extragalactic infrared and optical backgrounds as well as the intergalactic magnetic field, and will enable tests of quantum gravity and other "exotic" phenomena.
    Astroparticle Physics 04/2013; 43. · 4.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project.
    Astroparticle Physics 03/2013; 43:3-18. · 4.78 Impact Factor

Publication Stats

2k Citations
948.29 Total Impact Points

Institutions

  • 2010–2013
    • Harvard-Smithsonian Center for Astrophysics
      Cambridge, Massachusetts, United States
  • 2009–2013
    • Washington University in St. Louis
      • Department of Physics
      San Luis, Missouri, United States
    • Universität Heidelberg
      Heidelburg, Baden-Württemberg, Germany
  • 2011
    • Columbia University
      • Department of Astronomy and Astrophysics
      New York City, NY, United States
  • 2005–2011
    • University of Wisconsin, Madison
      • Department of Physics
      Mississippi, United States
  • 2004–2010
    • Max Planck Institute for Nuclear Physics
      Heidelburg, Baden-Württemberg, Germany
  • 2008
    • Max Planck Institute of Physics
      München, Bavaria, Germany
  • 1999–2008
    • University of California, Santa Cruz
      • Institute for Particle Physics
      Santa Cruz, CA, United States
  • 2006
    • Universität Hamburg
      • Institut für Experimentalphysik
      Hamburg, Hamburg, Germany