Sun Joo Park

Pukyong National University, Tsau-liang-hai, Busan, South Korea

Are you Sun Joo Park?

Claim your profile

Publications (14)34.71 Total impact

  • Source
    Dataset: mnfr2257
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ScopeSpirulina has been found suitable for use as bioactive additive. It is an excellent source of protein which can be hydrolyzed into bioactive peptides. Two peptides LDAVNR (P1) and MMLDF (P2) purified from enzymatic hydrolysate of Spirulina maxima have been reported to be effective against early atherosclerotic responses. In this study, the intracellular mechanism involved in the down-regulation of these peptides on FcεRI-mediated allergic reaction was further investigated.Methods and ResultsRBL-2H3 mast cells were pre-treated with P1 or P2 and sensitized with dinitrophenyl-specific IgE antibody before stimulation of antigen dinitrophenyl-BSA. It was revealed that P1 and P2 exhibited significant inhibition on mast cell degranulation via decreasing histamine release and intracellular Ca2+ elevation. The inhibitory activity of P1 was found due to blockade of calcium- and microtubule-dependent signaling pathways. Meanwhile, the inhibition of P2 was involved in suppression of phospholipase Cγ activation and reactive oxygen species production. Moreover, the suppressive effects of P1 and P2 on generation of IL-4 were evidenced via depression of nuclear factor (NF)-κB translocation.Conclusion These findings indicate that peptides P1 and P2 from S. maxima may be promising candidates of anti-allergic therapeutics, contributing to development of bioactive food ingredients for amelioration of allergic diseases.This article is protected by copyright. All rights reserved
    Molecular Nutrition & Food Research 08/2014; · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.
    BMB reports 03/2014; · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis.
    Journal of Forensic Sciences 02/2013; · 1.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the radioprotective effects of a polysaccharide isolated from enzymatic extracts of Ecklonia cava (E. cava) fermented by fungi and bacteria. We identified that the aqueous extract of the Lactobacillus brevis-fermented E. cava especially showed the highest proliferation effect. In addition, the enzymatic extract prepared by enzyme-assisted extraction using Viscozyme (VLFE) significantly increased cell proliferation. Further study indicated that the polysaccharides isolated from the >30kDa fraction of VLFE (VLFEP) significantly enhanced survival and proliferation effects in γ-ray-irradiated cells. Also, VLFEP markedly reduced the DNA damage, production of reactive oxygen species, and the percentage of Sub-G(1) DNA contents caused by γ-ray-irradiation. Moreover, VLFEP modulated the expression levels of p53, Bax, and Bcl-2 via inhibition of IκBα degradation and phosphorylation and NFκB p65 translocation into nuclei. These results demonstrate that VLFEP has radioprotective properties including the modulation of apoptosis via the inhibition of the NFκB signaling pathway.
    International journal of biological macromolecules 10/2012; · 2.37 Impact Factor
  • Sun Joo Park, Yong Tae Kim, You Jin Jeon
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS) generation is linked to dynamic actin cytoskeleton reorganization, which is involved in tumor cell motility and metastasis. Thus, inhibition of ROS generation and actin polymerization in tumor cells may represent an effective anticancer strategy. However, the molecular basis of this signaling pathway is currently unknown. Here, we show that the Ecklonia cava-derived antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Steady-state intracellular ROS levels were higher in malignant B16F10 cells than in parental, nonmetastatic B16F0 cells. Elevation of ROS by H(2)O(2) treatment increased migration and invasion ability of B16F0 cells to level similar to that of B16F10 cells, suggesting that intracellular ROS signaling mediates the prometastatic properties of B16 mouse melanoma cells. ROS levels and the cell migration and invasion ability of B16 melanoma cells correlated with Rac1 activation and WAVE2 expression. Overexpression of dominant negative Rac1 and depletion of WAVE2 by siRNA suppressed H(2)O(2)-induced cell invasion of B16F0 and B16F10 cells. Similarly, dieckol attenuates the ROS-mediated Rac1 activation and WAVE2 expression, resulting in decreased migration and invasion of B16 melanoma cells. In addition, we found that dieckol decreases association between WAVE2 and NADPH oxidase subunit p47(phox). Therefore, this finding suggests that WAVE2 acts to couple intracellular Rac1/ROS signaling to the invasive migration of B16 melanoma cells, which is inhibited by dieckol.
    Molecules and Cells 03/2012; 33(4):363-9. · 2.21 Impact Factor
  • Sun Joo Park, You Jin Jeon
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously isolated dieckol, a nutrient polyphenol compound, from the brown alga, Ecklonia cava (Lee et al.,2010a). Dieckol shows both antitumor and antioxidant activity and thus is of special interest for the development of chemopreventive and chemotherapeutic agents against cancer. However, the mechanism by which dieckol exerts its antitumor activity is poorly understood. Here, we show that dieckol, derived from E. cava, inhibits migration and invasion of HT1080 cells by scavenging intracellular reactive oxygen species (ROS). H2O2 or integrin signal-mediated ROS generation increases migration and invasion of HT1080 cells, which correlates with Rac1 activation and increased expression and phosphorylation of focal adhesion kinase (FAK). Rac1 activation is required for ROS generation. Depletion of FAK by siRNA suppresses Rac1-ROS-induced cell migration and invasion. Dieckol treatment attenuated intracellular ROS levels and activation of Rac1 as well as expression and phosphorylation of FAK. Dieckol treatment also decreases complex formation of FAK-Src-p130C as and expression of MMP2, 9, and 13. These results suggest that the Rac1-ROS-linked cascade enhances migration and invasion of HT1080 cells by inducing expression of MMPs through activation of the FAK signaling pathway, whereas dieckol downregulates FAK signaling through scavenging intracellular ROS. This finding provides new insights into the mechanisms by which dieckol is able to suppress human cancer progresssion and metastasis. Therefore, we suggest that dieckol is a potential therapeutic agent for cancer treatment.
    Molecules and Cells 01/2012; 33(2):141-9. · 2.21 Impact Factor
  • Sun Joo Park, Tadaomi Takenawa
    [Show abstract] [Hide abstract]
    ABSTRACT: The accurate distribution and segregation of replicated chromosomes through mitosis is crucial for cellular viability and development of organisms. Kinetochores are responsible for the proper congression and segregation of chromosomes. Here, we show that neural Wiskott-Aldrich syndrome protein (N-WASP) localizes to and forms a complex with kinetochores in mitotic cells. Depletion of NWASP by RNA interference causes chromosome misalignment, prolonged mitosis, and abnormal chromosomal segregation, which is associated with decreased proliferation of N-WASP-deficient cells. N-WASP-deficient cells display defects in the kinetochores recruitment of inner and outer kinetochore components, CENP-A, CENP-E, and Mad2. Live-cell imaging analysis of GFP-α-tubulin revealed that depletion of N-WASP impairs microtubule attachment to chromosomes in mitotic cells. All these results indicate that N-WASP plays a role in efficient assembly of kinetochores and attachment of microtubules to chromosomes, which is essential for accurate chromosome congression and segregation.
    Molecules and Cells 06/2011; 31(6):515-21. · 2.21 Impact Factor
  • Source
    Sun Joo Park
    [Show abstract] [Hide abstract]
    ABSTRACT: Huntingtin-interacting protein 1-related (HIP1r) is known to function in clathrin-mediated endocytosis and regulation of the actin cytoskeleton, which occurs continuously in non-dividing cells. This study reports a new function for HIP1r in mitosis. Green fluorescent protein-fused HIP1r localizes to the mitotic spindles. Depletion of HIP1r by RNA interference induces misalignment of chromosomes and prolonged mitosis, which is associated with decreased proliferation of HIP1r-deficeint cells. Chromosome misalignment leads to missegregation and ultimately production of multinucleated cells. Depletion of HIP1r causes persistent activation of the spindle checkpoint in misaligned chromosomes. These findings suggest that HIP1r plays an important role in regulating the attachment of spindle microtubules to chromosomes during mitosis, an event that is required for accurate congression and segregation of chromosomes. This finding may provide new insights that improve the understanding of various human diseases involving HIP1r as well as its fusion genes.
    BMB reports 12/2010; 43(12):795-800. · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The substrate specificities of porcine and bovine enteropeptidases were investigated using the peptide Val-(Asp)(4)-Lys-Ile-Val-Gly and its various analogs with mutations in the (Asp)(4)-Lys sequence as substrates. The results indicated that in addition to P1 Lys, P2 Asp in the substrates is most important, that P3 Asp is additionally important, and that P5 Asp contributes somewhat to the susceptibility, and that P4 Asp is the least important. These results were essentially identical as between porcine and bovine enteropeptidases.
    Bioscience Biotechnology and Biochemistry 04/2008; 72(3):905-8. · 1.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli signal peptidase I (SPase I) is a membrane-bound serine endopeptidase that catalyses the cleavage of signal peptides from the pre-forms of membrane or secretory proteins. Our previous studies using chemical modification and site-directed mutagenesis suggested that Trp(300) and Arg(77), Arg(222), Arg(315) and Arg(318) are important for the proper and stable conformation of the active site of SPase I. Interestingly, many of these residues reside in the C-terminal region of the enzyme. As a continuation of these studies, we investigated in the present study the effects of mutations in the C-terminal region including amino acid residues at positions from 319 to 323 by deletions and site-directed mutagenesis. As a result, the deletion of the C-terminal His(323) was shown to scarcely affect the enzyme activity of SPase I, whereas the deletion of Gly(321)-His(323) or Ile(319)-His(323) as well as the point mutation of Ile(322) to alanine was shown to decrease significantly both the activity in vitro and in vivo without a big gross conformational change in the enzyme. These results suggest a significant contribution of Ile(322) to the construction and maintenance of the proper and critical local conformation backing up the active site of SPase I.
    Journal of Biochemistry 03/2008; 143(2):237-42. · 3.07 Impact Factor
  • Source
    Bioscience Biotechnology and Biochemistry - BIOSCI BIOTECHNOL BIOCHEM. 01/2008; 72(3):905-908.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-WASP induces filopodial actin cytoskeleton through activation of the Arp2/3 complex. Here, we show that heat shock protein 90 (HSP90) regulates the structure of actin filaments induced by N-WASP and the Arp2/3 complex. HSP90 binds to N-WASP and to F-actin and bundles actin filaments. Bundling activity of HSP90 does not affect actin filament nucleation induced by N-WASP and the Arp2/3 complex. HSP90 is co-localized with N-WASP at branching points of actin filaments produced by the Arp2/3 complex and thereby bundles branched filaments; this bundled actin structure is inhibited by blocking direct binding between HSP90 and N-WASP. Furthermore, HSP90 converts branched actin filaments on N-WASP-coated beads to filopodia-like star-shaped bundles. These findings indicate that HSP90 promotes the formation of N-WASP/Arp2/3 complex-induced unbranched filopodial actin structures.
    Genes to Cells 06/2007; 12(5):611-22. · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural Wiskott-Aldrich syndrome protein (N-WASP) regulates reorganization of the actin cytoskeleton through activation of the Arp2/3 complex. Here, we show that heat shock protein 90 (HSP90) regulates N-WASP-induced actin polymerization in cooperation with phosphorylation of N-WASP. HSP90 binds directly to N-WASP, but binding alone does not affect the rate of N-WASP/Arp2/3 complex-induced in vitro actin polymerization. An Src family tyrosine kinase, v-Src, phosphorylates and activates N-WASP. HSP90 increases the phosphorylation of N-WASP by v-Src, leading to enhanced N-WASP-dependent actin polymerization. In addition, HSP90 protects phosphorylated and activated N-WASP from proteasome-dependent degradation, resulting in amplification of N-WASP-dependent actin polymerization. Association between HSP90 and N-WASP is increased in proportion to activation of N-WASP by phosphorylation. HSP90 is colocalized and associated with active N-WASP at podosomes in 3Y1/v-Src cells and at growing neurites in PC12 cells, whose actin structures are clearly inhibited by blocking the binding of HSP90 to N-WASP. These findings suggest that HSP90 induces efficient activation of N-WASP downstream of phosphorylation signal by Src family kinases and is critical for N-WASP-dependent podosome formation and neurite extension.
    The EMBO Journal 05/2005; 24(8):1557-70. · 9.82 Impact Factor

Publication Stats

77 Citations
34.71 Total Impact Points


  • 2010–2014
    • Pukyong National University
      • Department of Chemistry
      Tsau-liang-hai, Busan, South Korea
  • 2013
    • Chungbuk National University
      Chinsen, North Chungcheong, South Korea
  • 2012
    • Jeju National University
      • Faculty of Marine Biomedical Sciences
      Tse-tsiu, Jeju, South Korea
  • 2008
    • Aoyama Gakuin University
      • Department of Science and Engineering
      Tokyo, Tokyo-to, Japan
  • 2005–2008
    • The University of Tokyo
      • Institute of Medical Science
      Edo, Tōkyō, Japan