Ester Martín-Villar

Institute for Biomedical Research “Alberto Sols“, Madrid, Madrid, Spain

Are you Ester Martín-Villar?

Claim your profile

Publications (11)49.43 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Podosomes are integrin-based adhesions fundamental for stabilisation of the leading lamellae in migrating dendritic cells (DCs) and for extracellular matrix (ECM) degradation. We have previously shown that soluble factors and chemokines such as SDF 1-α trigger podosome initiation whereas integrin ligands promote podosome maturation and stability in DCs. The exact intracellular signalling pathways that regulate the sequential organisation of podosomal components in response to extracellular cues remain largely undetermined. The Wiskott Aldrich Syndrome Protein (WASP) mediates actin polymerisation and the initial recruitment of integrins and associated proteins in a circular configuration surrounding the core of F-actin during podosome initiation. We have now identified Integrin Linked Kinase (ILK) surrounding the podosomal actin core. We report that DC polarisation in response to chemokines and the assembly of actin cores during podosome initiation require PI3K-dependent clustering of the Wiskott Aldrich Syndrome protein (WASP) in puncta independently of ILK. ILK is essential for the clustering of integrins and associated proteins leading to podosome maturation and stability that are required for degradation of the subjacent extracellular matrix and the invasive motility of DCs across connective tissue barriers. We conclude that WASP regulates DCs polarisation for migration and initiation of actin polymerisation downstream of PI3 K in nascent podosomes. Subsequently, ILK mediates the accumulation of integrin-associated proteins during podosome maturation and stability for efficient degradation of the subjacent ECM during the invasive migration of DCs.
    The international journal of biochemistry & cell biology 01/2014; · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podoplanin (PDPN) is a mucin-like transmembrane glycoprotein that plays an important role in development and cancer. Here, we provide evidence that the intracellular domain (ICD) of podoplanin is released into the cytosol following a sequential proteolytic processing by a metalloprotease and γ-secretase. Western blotting and cell fractionation studies revealed that HEK293T and MDCK cells transfected with an eGFP-tagged podoplanin construct (PDPNeGFP, 50-63kDa) constitutively express two C-terminal fragments (CTFs): a ∼33kDa membrane-bound PCTF33, and a ∼29kDa cytosolic podoplanin ICD (PICD). While pharmacological inhibition of metalloproteases reduced the expression of PCTF33, treatment of cells with γ-secretase inhibitors resulted in enhanced PCTF33 levels. PCTF33 processing by γ-secretase depends on presenilin-1 (PS1) function: cells expressing a dominant negative form of PS1 (PS1 D385N), and mouse embryonic fibroblasts (MEFs) genetically deficient in PS1, but not in PS2, show higher levels of PCTF33 expression with respect to wild-type MEFs. Furthermore, transfection of PS1 deficient MEFs with wild-type PS1 (PS1wt) decreased PCTF33 levels. N-terminal amino acid sequencing of the affinity purified PICD revealed that the γ-secretase cleavage site was located between valines 150 and 151, but these residues are not critical for proteolysis. We found that podoplanin CTFs are also generated in cells expressing podoplanin mutants harboring heterologous transmembrane regions. Taken together, these results indicate that podoplanin is a novel substrate for PS1/γ-secretase.
    The international journal of biochemistry & cell biology 11/2013; · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endoglin is transmembrane glycoprotein mainly expressed in endothelial cells but also present in the epidermis and skin appendages. To address the role of endoglin in cutaneous wound healing, we compared the kinetics of re-epithelialization in endoglin heterozygous null (Eng(+/-)) mice and their normal littermates (Eng(+/+)) following skin wounds. The wound area was significantly larger in Eng(+/-) than Eng(+/+)mice from 2-8 days after injury; overall wound closure was delayed by 1 to 2 days. In Eng(+/-) mice keratinocytes at the wound edges exhibited impaired proliferation but were more migratory, as shown by their elongated morphology and increased keratin 17 expression. Inhibition of nitric oxide (NO) synthesis delayed healing in Eng(+/+) but not in Eng(+/-) mice. Administration of the NO donor LA-803 accelerated wound closure in Eng(+/-) mice with no effect in normal littermates. The acute stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated endoglin expression in mouse epidermal keratinocytes in vivo and in vitro associated with hyperproliferation. Likewise, the skin of Eng+/- mice failed to mount a hyperplastic response to acute stimulation with TPA. These results demonstrate an important involvement of endoglin in wound healing that is associated with NO bioavailability.Journal of Investigative Dermatology accepted article preview online, 13 June 2013; doi:10.1038/jid.2013.263.
    Journal of Investigative Dermatology 06/2013; · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podoplanin is a transmembrane glycoprotein that is upregulated in cancer and was reported to induce an epithelial-mesenchymal transition (EMT) in MDCK cells. The promotion of EMT was dependent on podoplanin binding to ERM (ezrin, radixin, moesin) proteins through its cytoplasmic (CT) domain, which led to RhoA-associated kinase (ROCK)-dependent ERM phosphorylation. Using detergent-resistant membrane (DRM) assays, as well as transmembrane (TM) interactions and ganglioside GM1 binding, we present evidence supporting the localization of podoplanin in raft platforms important for cell signalling. Podoplanin mutant constructs harbouring a heterologous TM region or lacking the CT tail were unable to associate with DRMs, stimulate ERM phosphorylation and promote EMT or cell migration. Similar effects were observed upon disruption of a GXXXG motif within the TM domain, which is involved in podoplanin self-assembly. In contrast, deletion of the extracellular (EC) domain did not affect podoplanin DRM association. Together, these data suggest that both the CT and TM domains are required for podoplanin localization in raft platforms, and that this association appears to be necessary for podoplanin-mediated EMT and cell migration.
    The international journal of biochemistry & cell biology 03/2011; 43(6):886-96. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podoplanin is a transmembrane glycoprotein up-regulated in different human tumors, especially those derived from squamous stratified epithelia (SCCs). Its expression in tumor cells is linked to increased cell migration and invasiveness; however, the mechanisms underlying this process remain poorly understood. Here we report that CD44, the major hyaluronan (HA) receptor, is a novel partner for podoplanin. Expression of the CD44 standard isoform (CD44s) is coordinately up-regulated together with that of podoplanin during progression to highly aggressive SCCs in a mouse skin model of carcinogenesis, and during epithelial-mesenchymal transition (EMT). In carcinoma cells, CD44 and podoplanin colocalize at cell surface protrusions. Moreover, CD44 recruitment promoted by HA-coated beads or cross-linking with a specific CD44 antibody induced corecruitment of podoplanin. Podoplanin-CD44s interaction was demonstrated both by coimmunoprecipitation experiments and, in vivo, by fluorescence resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM), the later confirming its association on the plasma membrane of cells with a migratory phenotype. Importantly, we also show that podoplanin promotes directional persistence of motility in epithelial cells, a feature that requires CD44, and that both molecules cooperate to promote directional migration in SCC cells. Our results support a role for CD44-podoplanin interaction in driving tumor cell migration during malignancy.
    Molecular biology of the cell 10/2010; 21(24):4387-99. · 5.98 Impact Factor
  • Ejc Supplements - EJC SUPPL. 01/2010; 8(5):167-167.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin D receptor (VDR) mediates the antitumoral action of the active vitamin D metabolite 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). VDR expression is lost during colon cancer progression causing unresponsiveness to 1,25(OH)(2)D(3) and its analogs. Previously, Snail1, an inducer of epithelial-to-mesenchymal transition (EMT), was reported to inhibit VDR expression. Here, we show that Snail2/Slug, but not other EMT inducers such as Zeb1, Zeb2, E47 or Twist1, represses VDR gene promoter. Moreover, Snail2 and Snail1 show additive repressing effect on VDR promoter. Snail2 inhibits VDR RNA and protein and blocks the induction of E-cadherin and an adhesive phenotype by 1,25(OH)(2)D(3). Snail2 reduces the ligand-induced VDR transcriptional activation of a consensus response element and of the CYP24 promoter. Concordantly, Snail2 inhibits the induction of CYP24 RNA and p21(CIP1), filamin A and vinculin proteins and the repression of c-MYC by 1,25(OH)(2)D(3). Additionally, Snail2 abrogates beta-catenin nuclear export and the antagonism of the transcriptional activity of beta-catenin-T-cell factor complexes by 1,25(OH)(2)D(3). SNAI2 expression is upregulated in 58% of colorectal tumors and correlates inversely with that of VDR. However, VDR downregulation is higher in tumors coexpressing SNAI2 and SNAI1 than in those expressing only one of these genes. Together, these data indicate that Snail2 and Snail1 cooperate for VDR repression in colon cancer.
    Carcinogenesis 07/2009; 30(8):1459-68. · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Podoplanin/PA2.26 antigen is a small transmembrane mucin expressed in different types of cancer where it is associated with increased cell migration, invasiveness and metastasis. Little is known about the mechanisms that control podoplanin expression. Here, we show that podoplanin synthesis can be controlled at different levels. We analyzed podoplanin expression in a wide panel of tumour cell lines. The podoplanin gene (PDPN) is transcribed in cells derived from sarcomas, embryonal carcinomas, squamous cell carcinomas and endometrial tumours, while cell lines derived from colon, pancreatic, ovarian and ductal breast carcinomas do not express PDPN transcripts. PDPN is expressed as two mRNAs of approximately 2.7 and approximately 0.9 kb, both of which contain the coding sequence and arise by alternative polyadenylation. Strikingly, in most of the cell lines where PDPN transcripts were found, no podoplanin or only very low levels of the protein could be detected in Western blot. Treatment of several of these cell lines with the calpain inhibitor calpeptin resulted in podoplanin accumulation, whereas lactacystin, a specific inhibitor of the proteasome, had no effect. In vitro experiments showed that podoplanin is a substrate of calpain-1. These results indicate that at least in some tumour cells absence or reduced podoplanin protein levels are due to post-translational calpain-mediated proteolysis. We also report in this article the identification of a novel podoplanin isoform that originates by alternative splicing and differs from the standard form in lacking two cytoplasmic residues (YS). YS dipeptide is highly conserved across species, suggesting that it might be functionally relevant.
    The international journal of biochemistry & cell biology 01/2009; 41(6):1421-9. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podoplanin is a small membrane mucin expressed in tumors associated with malignant progression. It is enriched at cell-surface protrusions where it colocalizes with members of the ERM (ezrin, radixin, moesin) protein family. Here, we found that human podoplanin directly interacts with ezrin (and moesin) in vitro and in vivo through a cluster of basic amino acids within its cytoplasmic tail, mainly through a juxtamembrane dipeptide RK. Podoplanin induced an epithelial-mesenchymal transition in MDCK cells linked to the activation of RhoA and increased cell migration and invasiveness. Fluorescence time-lapse video observations in migrating cells indicate that podoplanin might be involved in ruffling activity as well as in retractive processes. By using mutant podoplanin constructs fused to green fluorescent protein we show that association of the cytoplasmic tail with ERM proteins is required for upregulation of RhoA activity and epithelial-mesenchymal transition. Furthermore, expression of either a dominant-negative truncated variant of ezrin or a dominant-negative mutant form of RhoA blocked podoplanin-induced RhoA activation and epithelial-mesenchymal transition. These results provide a mechanistic basis to understand the role of podoplanin in cell migration or invasiveness.
    Journal of Cell Science 12/2006; 119(Pt 21):4541-53. · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the full cDNA sequence encoding the human homologue of murine PA2.26 (T1alpha-2, podoplanin), a small mucin-type transmembrane glycoprotein originally identified as a cell-surface antigen induced in keratinocytes during mouse skin carcinogenesis. The human PA2.26 gene is expressed as 2 transcripts of 0.9 and 2.7 kb in several normal tissues, such as the placenta, skeletal muscle, heart and lung. Using a specific polyclonal antibody raised against a synthetic peptide of the protein ectodomain, PA2.26 was immunohistochemically detected in about 25% (15/61) of human early oral squamous cell carcinomas. PA2.26 distribution in the tumours was heterogeneous and often restricted to the invasive front. Double immunofluorescence and confocal microscopy analysis showed that PA2.26 colocalized with the membrane cytoskeleton linker ezrin at the surface of tumour cells and that its presence in vivo was associated with downregulation of membrane E-cadherin protein expression. Ectopic expression of human PA2.26 in HeLa carcinoma cells and immortalized HaCaT keratinocytes promoted a redistribution of ezrin to the cell edges, the formation of cell-surface protrusions and reduced Ca(2+)-dependent cell-cell adhesiveness. These results point to PA2.26 as a novel biomarker for oral squamous cell carcinomas that might be involved in migration/invasion.
    International Journal of Cancer 04/2005; 113(6):899-910. · 6.20 Impact Factor
  • III Euroworkshop on Interdisciplinary Perspectives of Diagnostic Pathology, Cell Biology, and Morphometry (Biopath III), Madrid, Spain; 12/2002

Publication Stats

267 Citations
49.43 Total Impact Points

Institutions

  • 2009–2014
    • Institute for Biomedical Research “Alberto Sols“
      • Department of Cancer Biology
      Madrid, Madrid, Spain
  • 2005–2013
    • Spanish National Research Council
      • Instituto de Investigaciones Biomédicas "Alberto Sols"
      Madrid, Madrid, Spain
  • 2010
    • King's College London
      • Randall Division of Cell and Molecular Biophysics
      London, ENG, United Kingdom