Fangping Dai

Oncotest GmbH – Institute for Experimental Oncology, Freiburg an der Elbe, Lower Saxony, Germany

Are you Fangping Dai?

Claim your profile

Publications (9)66.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres and telomerase are targets for anticancer drug development and specific inhibitors are currently under clinical investigation. However, it has been reported that standard cytotoxic agents can affect telomere length and telomerase activity suggesting that they also have of a role in drug resistance. in this study, telomere lengths and telomerase activity as well as drug efflux pump expression, glutathione (GSH) levels and polyadenosine-ribose polymerase (PARP) cleavage were assessed in a panel of human tumor cell lines made resistant to vindesine, gemcitabine and cisplatin. these included two lung cancer cell lines resistant to vindesine (LXFL 529L/Vind, LXFA 526L/Vind), a renal cancer cell line (RXF944L/Gem) and an ovarian cancer cell line (AG6000) resistant to gemcitabine, and one resistant to cisplatin (ADDP). The resistant clones were compared to their parental lines and evaluated for cross resistance to other cytotoxic agents. Several drug specific resistance patterns were found, and various complex patterns of cross resistance emerged from some cell lines, but these mechanisms of resistance could not be related to drug efflux pump expression, GSH levels or pARp cleavage. However, all displayed changes in telomerase activity and/or telomere length. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics.
    Journal of chemotherapy (Florence, Italy) 11/2009; 21(5):542-9. DOI:10.1179/joc.2009.21.5.542 · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KML001 (sodium metaarsenite) is an orally bioavailable arsenic compound that has entered phase I/II clinical trials in prostate cancer. In this study, we elucidated the mode of action of KML001 and investigated its effects on telomerase and telomeres. We compared telomere length to KML001 cytotoxic activity in a panel of human solid tumor cell lines. Duration of exposure and concentrations of KML001 that affect telomerase and telomeres were evaluated in relation to established mechanisms of arsenite action such as reactive oxygen species-related DNA damage induction. Binding of KML001 to telomeres was assessed by matrix-assisted laser desorption/ionization mass spectrometry. We established a significant inverse correlation (r(2) = 0.9) between telomere length and cytotoxicity. KML001 exhibited activity in tumor cells with short telomeres at concentrations that can be achieved in serum of patients. We found that telomerase is not directly inhibited by KML001. Instead, KML001 specifically binds to telomeric sequences at a ratio of one molecule per three TTAGGG repeats leading to translocation of the telomerase catalytic subunit into the cytoplasm. In prostate cancer cells with short telomeres, KML001 caused telomere-associated DNA damage signaling as shown by gamma-H2AX induction and chromatin immunoprecipitation assays as well as a rapid telomere erosion shown by metaphase fluorescence in situ hybridization. These effects were not seen in a lung cancer cell line with long telomeres. Importantly, arsenification of telomeres preceded DNA lesions caused by reactive oxygen species production. Sodium metaarsenite is a telomere targeting agent and should be explored for the treatment of tumors with short telomeres.
    Clinical Cancer Research 07/2008; 14(14):4593-602. DOI:10.1158/1078-0432.CCR-07-4572 · 8.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pentacyclic acridinium methosulfate salt RHPS4 induces the 3'single-stranded guanine-rich telomeric overhang to fold into a G-quadruplex structure. Stabilisation of the latter is incompatible with an attachment of telomerase to the telomere and thus G-quadruplex ligands can effectively inhibit both the catalytic and capping functions of telomerase. In this study, we examined mechanisms underlying telomere uncapping by RHPS4 in uterus carcinoma cells (UXF1138L) with short telomeres and compared the susceptibility of bulk and clonogenic cancer cells to the G-quadruplex ligand. We show that treatment of UXF1138L cells with RHPS4 leads to the displacement of the telomerase catalytic subunit (hTERT) from the nucleus, induction of telomere-initiated DNA-damage signalling and chromosome fusions. We further report that RHPS4 is more potent against cancer cells that grow as colonies in soft agar than cells growing as monolayers. Human cord blood and HEK293T embryonic kidney cell colony forming units, however, were more resistant to RHPS4. RHPS4-treated UXF1138L xenografts had a decreased clonogenicity, showed loss of nuclear hTERT expression and an induction of mitotic abnormalities compared with controls. Although single-agent RHPS4 had limited in vivo efficacy, a combination of RHPS4 with the mitotic spindle poison Taxol caused tumour remissions and further enhancement of telomere dysfunction.
    British Journal of Cancer 05/2007; 96(8):1223-33. DOI:10.1038/sj.bjc.6603691 · 4.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeric integrity is required to maintain the replicative ability of cancer cells and is a target for the G-quadruplex-stabilizing drug 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4). We report a senescent-like growth arrest in MCF-7 breast cancer cells, within 14 to 17 days, and a reduction in telomere length (from 5.2 kilobases (kb) to 4.7 and 4.3 kb after 17 days of treatment at 0.5 and 1 microM, respectively). These effects occurred at noncytotoxic drug concentrations (doses < 1 microM over a 14-day exposure) compatible with long-term drug dosing. The telomere length of cancer cells influences their sensitivity to growth inhibition by RHPS4: mutant (mt) human telomerase reverse transcriptase (hTERT)-expressing MCF-7 cells [short telomere restriction fragment (TRF) length, 1.9 kb; IC50, 0.2 microM] were 10 times more sensitive to RHPS4 compared with wild-type (wt) hTERT-expressing, vector-transfected control cells (longer TRF-length 5.2 kb; IC50 2 microM) in the 5 day SRB assay. This relationship was corroborated in a panel of 36 human tumor xenografts grown in vitro showing a positive correlation between telomere length and growth inhibitory potency of RHPS4 (15-day clonogenic assay, r = 0.75). These observations are consistent with loss of the protective capping status of telomeres mediated by RHPS4 G-quadruplex-stabilization, thus leading to greater susceptibility of cells with shorter telomeres. In combination studies, paclitaxel (Taxol), doxorubicin (Adriamycin), and the experimental therapeutic agent 17-(allylamino)-17-demethoxygeldanamycin, which inhibits the 90-kDa heat shock protein, conferred enhanced sensitivity in RHPS4 treated MCF-7 cells, whereas the DNA-interactive temozolomide and cisplatin antagonized the action of RHPS4. Our results support the combined use of certain classes of cytotoxic anticancer agents with RHPS4 to enhance potential clinical benefit.
    Molecular Pharmacology 01/2006; 68(6):1551-8. DOI:10.1124/mol.105.013300 · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interference with telomerase and telomere maintenance is emerging as an attractive target for anticancer therapies. Ligand-induced stabilization of G-quadruplex formation by the telomeric DNA single-stranded 3' overhang inhibits telomerase from catalyzing telomeric DNA synthesis and from capping telomeric ends. We report here the effects of a 3,6,9-trisubstituted acridine compound, BRACO-19, on telomerase function in vitro and in vivo. The biological activity of BRACO-19 was evaluated in the human uterus carcinoma cell line UXF1138L, which has very short telomeres (2.7 kb). In vitro, nuclear human telomerase reverse transcriptase (hTERT) expression was drastically decreased after 24 hours, induction of cellular senescence and complete cessation of growth was seen after 15 days, paralleled by telomere shortening of ca. 0.4 kb. In vivo, BRACO-19 was highly active as a single agent against early-stage (68 mm(3)) tumors in a s.c. growing xenograft model established from UXF1138L cells, if given chronically at 2 mg per kg per day i.p. BRACO-19 produced growth inhibition of 96% compared with controls accompanied by partial regressions (P < 0.018). Immunostaining of xenograft tissues showed that this response was paralleled by loss of nuclear hTERT protein expression and an increase in atypical mitoses indicative of telomere dysfunction. Cytoplasmic hTERT expression and its colocalization with ubiquitin was observed suggesting that hTERT is bound to ubiquitin and targeted for enhanced degradation upon BRACO-19 treatment. This is in accord with a model of induced displacement of telomerase from the telomere. The in vitro and in vivo data presented here is consistent with the G-quadruplex binding ligand BRACO-19 producing an anticancer effect by inhibiting the capping and catalytic functions of telomerase.
    Cancer Research 02/2005; 65(4):1489-96. DOI:10.1158/0008-5472.CAN-04-2910 · 9.33 Impact Factor

  • EJC Supplements 09/2004; 2(8):34-34. DOI:10.1016/S1359-6349(04)80113-7 · 9.39 Impact Factor

  • EJC Supplements 09/2004; 2(8):188-188. DOI:10.1016/S1359-6349(04)80630-X · 9.39 Impact Factor
  • Source

    EJC Supplements 09/2004; 2(8):130-131. DOI:10.1016/S1359-6349(04)80444-0 · 9.39 Impact Factor
  • Source

    EJC Supplements 09/2004; 2(8):130-131. · 9.39 Impact Factor

Publication Stats

432 Citations
66.16 Total Impact Points


  • 2006-2009
    • Oncotest GmbH – Institute for Experimental Oncology
      Freiburg an der Elbe, Lower Saxony, Germany
  • 2008
    • University of Freiburg
      • Institute of Anatomy and Cell Biology
      Freiburg, Baden-Württemberg, Germany