Carl L Manthey

Johnson & Johnson, New Brunswick, New Jersey, United States

Are you Carl L Manthey?

Claim your profile

Publications (28)95.46 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structure-activity relationship (SAR) studies on a highly potent series of arylamide FMS inhibitors were carried out with the aim of improving FMS kinase selectivity, particularly over KIT. Potent compound 17r (FMS IC50 0.7nM, FMS cell IC50 6.1nM) was discovered that had good PK properties and a greater than fivefold improvement in selectivity for FMS over KIT kinase in a cellular assay relative to the previously reported clinical candidate 4. This improved selectivity was manifested in vivo by no observed decrease in circulating reticulocytes, a measure of bone safety, at the highest studied dose. Compound 17r was highly active in a mouse pharmacodynamic model and demonstrated disease-modifying effects in a dose-dependent manner in a strep cell wall-induced arthritis model of rheumatoid arthritis in rats.
    Bioorganic & medicinal chemistry letters 10/2013; · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of macrophages to cause acute inflammatory glomerular injury is well established; however, the role of macrophages in the fibrotic phase of chronic kidney disease remains poorly understood. This study examined the role of macrophages in the fibrotic phase (days 14 to 35) of established crescentic glomerulonephritis. Nephrotoxic serum nephritis (NTN) was induced in groups of 8 WKY rats which were given a selective c-fms kinase inhibitor, fms-I, or vehicle alone from day 14 until being killed on day 35. Rats killed on day 14 NTN had pronounced macrophage infiltration with glomerular damage, fibrocellular crescents in 50% of glomeruli, tubulointerstitial damage, heavy proteinuria and renal dysfunction. Glomerulosclerosis was more severe by day 35 in vehicle treated rats, as was periglomerular and interstitial fibrosis, while proteinuria and renal dysfunction continued unabated and some parameters of tubular damage worsened. During the day 14 to 35 period, glomerular and interstitial macrophage infiltrate decreased with an apparent change from a pro-inflammatory M1 phenotype to an alternatively activated M2 phenotype. Treatment with fms-I over day 14 to 35 selectively reduced blood monocyte numbers and abrogated glomerular and interstitial macrophage infiltration. This resulted in improved renal function, significantly reduced glomerular and interstitial fibrosis, and protection against further peritubular capillary loss. However, sustained proteinuria, tubular damage and interstitial T cell infiltration and activation were unaffected. In conclusion, this study demonstrates that macrophages contribute to renal dysfunction and tissue damage in established crescentic glomerulonephritis as it progresses from the acute inflammatory to a chronic fibrotic phase.
    AJP Renal Physiology 02/2013; · 4.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A class of potent inhibitors of colony-stimulating factor-1 receptor (CSF-1R or FMS), as exemplified by 8 and 21, was optimized to improve pharmacokinetic and pharmacodynamic properties and potential toxicological liabilities. Early stage absorption, distribution, metabolism, and excretion assays were employed to ensure the incorporation of druglike properties resulting in the selection of several compounds with good activity in a pharmacodynamic screening assay in mice. Further investigation, utilizing the type II collagen-induced arthritis model in mice, culminated in the selection of anti-inflammatory development candidate JNJ-28312141 (23, FMS IC(50) = 0.69 nM, cell assay IC(50) = 2.6 nM). Compound 23 also demonstrated efficacy in rat adjuvant and streptococcal cell wall-induced models of arthritis and has entered phase I clinical trials.
    Journal of Medicinal Chemistry 11/2011; 54(22):7860-83. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinase (MMP)-9, a member of the gelatinase family of MMPs, mediates leukocyte migration during inflammation. Inflammation contributes to development of postoperative ileus (POI), which is caused by physical disturbances to the bowel during abdominal surgery. We evaluated the role of MMP-9 in POI and investigated whether disruption of MMP-9 or administration of an inhibitor of MMP-9 activity reduced cellular inflammation and bowel dysmotility in rat and mouse models of POI. Mice and rats underwent laparotomy and bowel manipulation; bowel tissues were collected 3 to 24 hours later and analyzed by real-time reverse-transcriptase polymerase chain reaction, immunoblot, in situ zymography, and functional analyses. Bowel manipulation resulted in a time-dependent increase in MMP-9 expression within the intestinal muscularis; increases in MMP-9 messenger RNA were inducible nitric oxide synthase dependent. Immunoblot analyses confirmed the presence of the proenzyme and the catalytically active form of MMP-9. Administration of MMP-2/MMP-9 II, a dual active-site inhibitor, reduced the number of myeloperoxidase-positive immune cells that infiltrated the muscularis and prevented the surgically induced reduction in bowel smooth muscle contractility. Zymography analysis, performed in muscularis whole mounts in situ, indicated that MMP-9 and not MMP-2 mediated the gelatinase activity observed in infiltrating cells. MMP-9 knockout mice were protected from the inflammation and dysmotility associated with POI. MMP-9 mediates cellular inflammatory responses within the intestinal muscularis in mouse and rat models of POI. Inhibition of MMP-9 activity reduced recruitment of immune cells to the intestinal muscularis, preventing loss of smooth muscle contractility. Induction of MMP-9 expression requires inducible nitric oxide synthase.
    Gastroenterology 06/2011; 141(4):1283-92, 1292.e1-4. · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depletion and adoptive transfer studies have demonstrated that macrophages induce glomerular lesions in experimental anti-glomerular basement membrane (anti-GBM) glomerulonephritis. However, there is no current therapeutic strategy that can rapidly and selectively remove these cells from the glomerulus in order to halt disease development. This study examined whether inhibition of the receptor for macrophage colony-stimulating factor (known as c-fms), which is selectively expressed by monocyte/macrophages, can eliminate the macrophage infiltrate in a rat model of crescentic anti-GBM glomerulonephritis. Wistar-Kyoto rats were treated with 10 or 30 mg/kg bid of fms-I (a selective c-fms kinase inhibitor) from the time of anti-GBM serum injection until being killed 1, 5 or 14 days later. fms-I treatment had only a minor effect upon the glomerular macrophage infiltrate on day 1 and did not prevent the subsequent induction of proteinuria. However, fms-I treatment reduced the glomerular macrophage infiltrate by 60% at day 5 and completely reversed the macrophage infiltrate by day 14. In addition, fms-I treatment downregulated the glomerular expression of pro-inflammatory molecules (TNF-α, NOS2, MMP-12, CCL2 and IL-12) on days 1 and 5, suggesting a suppression of the macrophage M1-type response. Despite a significant early loss of glomerular podocytes, ongoing proteinuria and glomerular tuft adhesions to Bowman's capsule, the reversal of the macrophage infiltrate prevented the development of glomerulosclerosis, crescent formation, tubulointerstitial damage and renal dysfunction. In conclusion, this study has identified c-fms kinase inhibition as a selective approach to target infiltrating macrophages in acute glomerular injury, which may have therapeutic potential in rapidly progressive crescentic glomerulonephritis.
    Laboratory Investigation 04/2011; 91(7):978-91. · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During efforts to improve the bioavailability of FMS kinase inhibitors 1 and 2, a series of saturated and aromatic 4-heterocycles of reduced basicity were prepared and evaluated in an attempt to also improve the cardiovascular safety profile over lead arylamide 1, which possessed ion channel activity. The resultant compounds retained excellent potency and exhibited diminished ion channel activity.
    Bioorganic & medicinal chemistry letters 07/2010; 20(13):3925-9. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence that tumor-associated macrophages promote the malignancy of some cancers. Colony-stimulating factor-1 (CSF-1) is expressed by many tumors and is a growth factor for macrophages and mediates osteoclast differentiation. Herein, we report the efficacy of a novel orally active CSF-1 receptor (CSF-1R) kinase inhibitor, JNJ-28312141, in proof of concept studies of solid tumor growth and tumor-induced bone erosion. H460 lung adenocarcinoma cells did not express CSF-1R and were not growth inhibited by JNJ-28312141 in vitro. Nevertheless, daily p.o. administration of JNJ-28312141 caused dose-dependent suppression of H460 tumor growth in nude mice that correlated with marked reductions in F4/80(+) tumor-associated macrophages and with increased plasma CSF-1, a possible biomarker of CSF-1R inhibition. Furthermore, the tumor microvasculature was reduced in JNJ-28312141-treated mice, consistent with a role for macrophages in tumor angiogenesis. In separate studies, JNJ-28312141 was compared with zoledronate in a model in which MRMT-1 mammary carcinoma cells inoculated into the tibias of rats led to severe cortical and trabecular bone lesions. Both agents reduced tumor growth and preserved bone. However, JNJ-28312141 reduced the number of tumor-associated osteoclasts superior to zoledronate. JNJ-28312141 exhibited additional activity against FMS-related receptor tyrosine kinase-3 (FLT3). To more fully define the therapeutic potential of this new agent, JNJ-28312141 was evaluated in a FLT3-dependent acute myeloid leukemia tumor xenograft model and caused tumor regression. In summary, this novel CSF-1R/FLT3 inhibitor represents a new agent with potential therapeutic activity in acute myeloid leukemia and in settings where CSF-1-dependent macrophages and osteoclasts contribute to tumor growth and skeletal events.
    Molecular Cancer Therapeutics 11/2009; 8(11):3151-61. · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of pyrido[2,3-d]pyrimidin-5-ones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). FMS inhibitors may be useful in treating rheumatoid arthritis and other chronic inflammatory diseases. Structure-based optimization of the lead amide analogue 10 led to hydroxamate analogue 37, which possessed excellent potency and an improved pharmacokinetic profile. During the chronic phase of streptococcal cell wall-induced arthritis in rats, compound 37 (10, 3, and 1 mg/kg) was highly effective at reversing established joint swelling. In an adjuvant-induced arthritis model in rats, 37 prevented joint swelling partially at 10 mg/kg. In this model, osteoclastogenesis and bone erosion were prevented by low doses (1 or 0.33 mg/kg) that had minimal impact on inflammation. These data underscore the potential of FMS inhibitors to prevent erosions and reduce symptoms in rheumatoid arthritis.
    Journal of Medicinal Chemistry 03/2009; 52(4):1081-99. · 5.61 Impact Factor
  • Carl L. Manthey, Mark R. Player
    Annual Reports in Medicinal Chemistry - ANNU REP MED CHEM. 01/2009; 44:211-225.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of macrophages in promoting interstitial fibrosis in the obstructed kidney is controversial. Macrophage depletion studies in the unilateral ureter obstruction (UUO) model have produced opposing results, presumably reflecting the subtleties of the individual depletion methods used. To address this question, we targeted the macrophage colony-stimulating factor receptor, c-fms, which is uniquely expressed by cells of the monocyte/macrophage lineage. Administration of 5, 12.5, or 30 mg/kg (bid) of a selective inhibitor of c-fms kinase activity (fms-I) resulted in a dose-dependent inhibition of renal macrophage accumulation in the rat UUO model. This was due to inhibition of local macrophage proliferation in the obstructed kidney and, at higher doses, to depletion of circulating blood monocytes. To determine the contribution of macrophages to renal pathology in the obstructed kidney, groups of animals were treated with 30 mg/kg fms-I and killed 3, 7, or 14 days later. Complete inhibition of renal macrophage accumulation prevented upregulation of the macrophage-associated proinflammatory mediators, tumor necrosis factor (TNF)-alpha and matrix metalloproteinase-12, and significantly reduced tubular apoptosis. Macrophage depletion caused a minor reduction of interstitial myofibroblast accumulation and deposition of interstitial collagen IV at day 3, but no difference was seen in renal fibrosis on day 7 or 14. Similarly, the upregulation of collagen IV, fibronectin, transforming growth factor-beta1 and connective tissue growth factor mRNA levels on day 7 and 14 in the obstructed kidney was unaffected by macrophage depletion. In conclusion, c-fms blockade was shown to selectively prevent interstitial macrophage accumulation and to reduce tubular apoptosis in the obstructed kidney, but it had no significant impact on the development of interstitial fibrosis.
    American journal of physiology. Renal physiology 12/2008; 296(1):F177-85. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An anti-inflammatory 1,2,4-phenylenetriamine-containing series of FMS inhibitors with a potential to form reactive metabolites was transformed into a series with equivalent potency by incorporation of carbon-based replacement groups. Structure-based modeling provided the framework to efficiently effect this transformation and restore potencies to previous levels. This optimization removed a risk factor for potential idiosyncratic drug reactions.
    Bioorganic & medicinal chemistry letters 07/2008; 18(12):3632-7. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pharmacokinetics of TDP223206 was studied following single intravenous and oral administrations in rats. A mixture of TDP223206 and (14)C-TDP223206 were administered to intact and bile duct-cannulated rats. Following intravenous administration, plasma concentrations declined biphasically. The AUC(inf) increased linearly with dose but was not dose proportional. The PK parameters of TDP223206 indicated low clearance (254-386 ml/h/kg) and a moderate volume of distribution (968-1883 ml/kg). The bioavailability was 32.95% and 24.46% for 10 and 50 mg/kg oral doses, respectively. (14)C-TDP223206 was distributed widely into different tissues with small intestine, liver, kidneys and large intestine having large tissue to plasma ratios. (14)C-TDP223206 was the major circulating component in the plasma. A total of 91.2% of administered radioactivity of (14)C-TDP223206 was recovered in bile indicating that biliary excretion was the major pathway for drug elimination. (14)C-TDP223206-acyl glucuronides were the major metabolites in bile. The oxo-(14)C-TDP223206 was the major metabolite in plasma and an important metabolite in bile. Two forms of diastereomeric acyl glucuronides of (14)C-TDP223206 were detected in bile with similar LC/MS intensities suggesting a similar biotransformation capacity. Only one form of these (14)C-TDP223206-acyl glucuronides was detected in plasma suggesting that enterohepatic recirculation was related to the nature of the stereo-isomers.
    Biopharmaceutics & Drug Disposition 06/2008; 29(4):219-30. · 2.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of pyrimidinopyridones has been designed, synthesized and shown to be potent and selective inhibitors of the FMS tyrosine kinase. Introduction of an amide substituent at the 6-position of the pyridone core resulted in a significant potency increase. Compound 24 effectively inhibited in vivo LPS-induced TNF in mice greater than 80%.
    Bioorganic & medicinal chemistry letters 05/2008; 18(7):2355-61. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of 3,4,6-substituted 2-quinolones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). The fully optimized compound, 4-(4-ethyl-phenyl)-3-(2-methyl-3H-imidazol-4-yl)-2-quinolone-6-carbonitrile 21b, has an IC(50) of 2.5 nM in an in vitro assay and 5.0 nM in a bone marrow-derived macrophage cellular assay. Inhibition of FMS signaling in vivo was also demonstrated in a mouse pharmacodynamic model.
    Bioorganic & medicinal chemistry letters 04/2008; 18(6):2097-102. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of novel acylsulfonamide, acylsulfamide, and sulfonylurea bioisosteres of carboxylic acids were prepared as CXCR2 antagonists. Structure-activity relationships are reported for these series. One potent orally bioavailable inhibitor had excellent PK properties and was active in a lung injury model in hyperoxia-exposed newborn rats.
    Bioorganic & medicinal chemistry letters 04/2008; 18(6):1926-30. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The optimization of the arylamide lead 2 resulted in identification of a highly potent series of 2,4-disubstituted arylamides. Compound 8 (FMS kinase IC(50)=0.0008 microM) served as a proof-of-concept candidate in a collagen-induced model of arthritis in mice.
    Bioorganic & medicinal chemistry letters 04/2008; 18(5):1642-8. · 2.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vitronectin receptor alpha(v)beta(3) has been identified as a promising potential target for the treatment of osteoporosis, diabetic retinopathy and cancer. We have recently reported 5-substituted indoles 3-[5-[2-(5,6,7,8-tetrahydro[1,8]naphthyridin-2-yl)ethoxy]indol-1-yl]-3-(3-pyridyl)propionic acid 3 and 3-[5-[2-(5,6,7,8-tetrahydro[1,8]naphthyridin-2-yl)ethoxy]indol-1-yl]-3-(3,4-methylenedioxyphenyl)propionic acid 4, as an original series of potent alpha(v)beta(3) antagonists with subnanomolar activity. Ligand-protein docking analyses have been performed to generate binding models of three different chemical classes of known alpha(v)beta(3) antagonists with alpha(v)beta(3). Results of this docking study suggested that indoles bearing the basic tetrahydronaphthyridine group at position 4 can easily adopt the correct binding conformation and should be as potent as our current 5-substituted indole leads 3 and 4. This hypothesis was nicely demonstrated by the synthesis of a series of 1,4-disubstituted indoles through a tandem of reactions involving: (i) the N-alkylation of indoles 15 and 22 with propargyl esters and cesium fluoride, and (ii) a Heck coupling reaction between 4-bromoindole and 7-vinyl-3,4-dihydro-2H-[1,8]naphthyridine-1-carboxylic acid tert-butyl ester 12, or (iii) a reductive amination involving the N-substituted-4-aminoindole 23 and the BOC-protected tetrahydro[1,8]naphthyridine aldehyde 13. Among the compounds assayed, 3-(3-pyridyl)-3-[4-[2-(5,6,7,8-tetrahydro[1,8]naphthyridin-2-yl)ethyl]indol-1-yl]propionic acid 21 showed the most promising activity on alpha(v)beta(3) (IC(50)=0.5 nM), and was found to have the same potency as our current leads 3 and 4, while maintaining selectivity over alpha(IIb)beta(IIIa). Moreover, based on the reasonable apparent permeability coefficient in an in vitro CACO-2 cell monolayer assay (P(app) apical/basolateral=2.2 x 10(-6)cm/s, P(app) basolateral/apical=2.5 x 10(-6)cm/s), compound 21 is expected to be absorbed through the intestine in human. Thus, 1,4-disubstituted indole 21 represents a new lead for this novel class of conformationally restricted alpha(v)beta(3) antagonists. Additionally, this study validates the pharmacophore model previously postulated and provides an improved basis for further structure-based drug design in the field of alpha(v)beta(3).
    European Journal of Medicinal Chemistry 04/2007; 42(3):334-43. · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vitronectin receptor αvβ3 has been identified as a promising potential target for the treatment of osteoporosis, diabetic retinopathy and cancer. We have recently reported 5-substituted indoles 3-[5-[2-(5,6,7,8-tetrahydro[1,8]naphthyridin-2-yl)ethoxy]indol-1-yl]-3-(3-pyridyl)propionic acid 3 and 3-[5-[2-(5,6,7,8-tetrahydro[1,8]naphthyridin-2-yl)ethoxy]indol-1-yl]-3-(3,4-methylenedioxyphenyl)propionic acid 4, as an original series of potent αvβ3 antagonists with subnanomolar activity. Ligand–protein docking analyses have been performed to generate binding models of three different chemical classes of known αvβ3 antagonists with αvβ3. Results of this docking study suggested that indoles bearing the basic tetrahydronaphthyridine group at position 4 can easily adopt the correct binding conformation and should be as potent as our current 5-substituted indole leads 3 and 4. This hypothesis was nicely demonstrated by the synthesis of a series of 1,4-disubstituted indoles through a tandem of reactions involving: (i) the N-alkylation of indoles 15 and 22 with propargyl esters and cesium fluoride, and (ii) a Heck coupling reaction between 4-bromoindole and 7-vinyl-3,4-dihydro-2H-[1,8]naphthyridine-1-carboxylic acid tert-butyl ester 12, or (iii) a reductive amination involving the N-substituted-4-aminoindole 23 and the BOC-protected tetrahydro[1,8]naphthyridine aldehyde 13. Among the compounds assayed, 3-(3-pyridyl)-3-[4-[2-(5,6,7,8-tetrahydro[1,8]naphthyridin-2-yl)ethyl]indol-1-yl]propionic acid 21 showed the most promising activity on αvβ3 (IC50 = 0.5 nM), and was found to have the same potency as our current leads 3 and 4, while maintaining selectivity over αIIbβIIIa. Moreover, based on the reasonable apparent permeability coefficient in an in vitro CACO-2 cell monolayer assay (Papp apical/basolateral = 2.2 × 10−6 cm/s, Papp basolateral/apical = 2.5 × 10−6 cm/s), compound 21 is expected to be absorbed through the intestine in human. Thus, 1,4-disubstituted indole 21 represents a new lead for this novel class of conformationally restricted αvβ3 antagonists. Additionally, this study validates the pharmacophore model previously postulated and provides an improved basis for further structure-based drug design in the field of αvβ3.
    ChemInform 01/2007; 38(30).
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
    ChemInform 11/2006; 37(51).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The binding of lead compounds and drugs to human serum albumin (HSA) is a ubiquitous problem in drug discovery since it modulates the availability of the leads and drugs to their intended target, which is linked to biological efficacy. In our continuing efforts to identify small molecule alpha(V)beta(3) and alpha(V)beta(5) dual antagonists, we recently reported indoles 2-4 as potent and selective alpha(V)beta(3)/alpha(V)beta(5) antagonists with good oral bioavailability profile. In spite of subnanomolar binding affinity of these compounds to human alpha(V)beta(3) and alpha(V)beta(5) integrins, high HSA binding (96.5-97.3%) emerged as a limiting feature for these leads. Structure-activity HSA binding data of organic acids reported in the literature have demonstrated that the incorporation of polar groups into a given molecule can dramatically decrease the affinity toward HSA. We sought to apply this strategy by examining the effects of such modifications in both the central core constrain and the substituent beta to the carboxylate. Most of these derivatives were prepared in good yields through a cesium fluoride-catalyzed coupling reaction. This reaction was successful with a variety of nitrogen-containing scaffolds (20, 33, and 43) and selected acetylenic derivatives (16, 19, and 34). Among the compounds synthesized, the 3-[5-[2-(5,6,7,8-tetrahydro [1,8]naphthyridin-2-yl)ethoxy]indol-1-yl]-3-[5-(N,N-dimethylaminomethyl)-3-pyridyl]propionic acid (25) was found to be the most promising derivative within this novel series with a subnanomolar affinity for both alpha(v)beta(3) and alpha(v)beta(5) (IC(50) = 0.29 and 0.16 nM, respectively), similar to our initial lead receptor antagonists 2-4, and exhibiting a low HSA protein binding (40% bound, K(d) = 1.1+/-0.4 x 10(3) microM) and an improved in vitro stability profile toward human and mouse microsomes (99.9% and 98.7% remaining after 10 min). Moreover, the selectivity of 25 toward alpha(5)beta(1) and IIbIIIa integrins was perfectly maintained when compared to the parent leads 2-4. Thus, compound 25 was selected as a new lead with improved drug-like properties for further evaluations in the field of oncology and osteoporosis.
    European Journal of Medicinal Chemistry 08/2006; 41(7):847-61. · 3.50 Impact Factor