Publications (83)107.43 Total impact
 [Show abstract] [Hide abstract]
ABSTRACT: By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atomlight interaction regime heavily affected by timedependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of "dark" and "bright" resonances leading to powerdependent branching coefficients.Physical Review A 10/2015; 92(4). DOI:10.1103/PhysRevA.92.043408 · 2.81 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: The temporal dynamics of the three dimensional hydrogen atom under the action of an external electric field is studied by using an analytic model and a numerical simulation. In the stationary case, analytic expressions for determining the evolution of angular momentum L of the Rydberg electron (RE) are obtained and significant oscillations of L are noted. Under conditions of the dynamical chaos regime stimulated by a linearly polarized microwave field, additional specific features of the evolution of L are found with the help of unification of the equations of motion and numerical calculations. The role of L in the formation of diffu sion ionization of the RE is revealed.Optics and Spectroscopy 12/2014; 117(6):861868. DOI:10.1134/S0030400X14120066 · 0.72 Impact Factor  Russian Journal of Physical Chemistry 11/2014; 88(11):18891903. DOI:10.1134/S0036024414110041 · 0.56 Impact Factor
 [Show abstract] [Hide abstract]
ABSTRACT: Radiative and collisional constants of excited atoms contain the matrix elements of the dipole transitions and when they are blocked one can expect occurring a number of interesting phenomena in radiationcollisional kinetics. In recent astrophysical studies of IR emission spectra it was revealed a gap in the radiation emitted by Rydberg atoms (RA ) with values of the principal quantum number of n≈10n≈10. Under the presence of external electric fields a rearrangement of RA emission spectra is possible to associate with manifestations of the Stark effect. The threshold for electric field ionization of RA is E≈3·104E≈3·104 V/cm for states with n>10n>10. This means that the emission of RA with n≥10n≥10 is effectively blocked for such fields. In the region of lower electric field intensities the double Stark resonance (or Förster resonance) becomes a key player. On this basis it is established the fact that the static magnetic or electric fields may strongly affect the radiative constants of optical transitions in the vicinity of the Föster resonance resulting, for instance, in an order of magnitude reduction of the intensity in some lines. Then, it is shown in this work that in the atmospheres of celestial objects lifetimes of comparatively longlived RA states and intensities of corresponding radiative transitions can be associated with the effects of dynamic chaos via collisional ionization. The Föster resonance allows us to manipulate the random walk of the Rydberg electron (RE) in the manifold of quantum levels and hence change the excitation energies of RA, which lead to anomalies in the IR spectra.Advances in Space Research 10/2014; 54(7):1159–1163. · 1.36 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We investigate theoretically the formation of twocomponent light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation, the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.Physical Review A 09/2014; 90(3). DOI:10.1103/PhysRevA.90.033827 · 2.81 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: A stable symplectic scheme for calculating particle trajectories in timeperiodic force fields based on the Floquet technique and splitoperator method is described. The dynamics of a threedimensional hydrogen atom under the action of an external linearly polarized microwave electric field is studied in a numerical experiment. Under conditions of the implemented dynamical chaos, features in the evolution of angular momentum L(t) of a Rydberg electron (RE) that do not meet the assumptions of traditional theoretical approaches for describing lightinduced diffusion ionization of the RE are revealed.Optics and Spectroscopy 07/2014; 117(1):817. DOI:10.1134/S0030400X1407008X · 0.72 Impact Factor 
Dataset: bezuglov13

Dataset: bez13
 [Show abstract] [Hide abstract]
ABSTRACT: Radiative and collisional constants of excited atoms contain the matrix elements of the dipole transitions and when they are blocked one can expect occurring a number of interesting phenomena in radiationcollisional kinetics. In recent astrophysical studies of IR emission spectra it was revealed a gap in the radiation emitted by Rydberg atoms ($RA$) with values of the principal quantum number of $n\approx10$. Under the presence of external electric fields a rearrangement of $RA$ emission spectra is possible to associate with manifestations of the Stark effect. The threshold for electric field ionization of $RA$ is $E\approx3\cdot10^{4}$ V/cm for states with $n>10$. This means that the emission of $RA$ with $n\ge10$ is effectively blocked for such fields. In the region of lower electric field intensities the double Stark resonance (or F\"{o}rster resonance) becomes a key player. On this basis it is established the fact that the static magnetic or electric fields may strongly affect the radiative constants of optical transitions in the vicinity of the F\"{o}ster resonance resulting, for instance, in an order of magnitude reduction of the intensity in some lines. Then, it is shown in this work that in the atmospheres of celestial objects lifetimes of comparatively longlived $RA$ states and intensities of corresponding radiative transitions can be associated with the effects of dynamic chaos via collisional ionization. The F\"{o}ster resonance allows us to manipulate the random walk of the Rydberg electron ($RE$) in the manifold of quantum levels and hence change the excitation energies of $RA$, which lead to anomalies in the IR spectra.Advances in Space Research 11/2013; 54(7). DOI:10.1016/j.asr.2013.08.028 · 1.36 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We revisit transit time broadening for one of the typical experiment designs in molecular spectroscopy, that of a collimated supersonic beam of particles crossing a focused Gaussian laser beam. In particular, we consider a Dopplerfree arrangement of a collimated supersonic beam of Na2 molecules crossing two counterpropagating laser beams that excite a twophoton transition in a threelevel ladder scheme. We propose an analytical twolevel model with a virtual intermediate level to show that the excitation line shape is described by a Voigt profile and provide the validity range of this model with respect to significant experimental parameters. The model also shows that line broadening due to the curvature of laser field wave fronts on the particle beam path is exactly compensated by increased transit time of particles farther away from the beam axis, such that the broadening is determined solely by the size of the laser beam waist. The analytical model is validated by comparing it with numerical simulations of densitymatrix equations of motion using a split propagation technique and with experimental results.Physical Review A 07/2012; 86(1). DOI:10.1103/PhysRevA.86.012501 · 2.81 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We revisit transit time broadening for one of the typical experiment designs in molecular spectroscopy, that of a collimated supersonic beam of particles crossing a focused Gaussian laser beam. In particular, we consider a Dopplerfree arrangement of a collimated supersonic beam of Na_2 molecules crossing two counterpropagating laser beams that excite a twophoton transition in a threelevel ladder scheme. We propose an analytical twolevel model with a virtual intermediate level to show that the excitation line shape is described by a Voigt profile and provide the validity range of this model with respect to significant experimental parameters. The model also shows that line broadening due to the curvature of laser field wave fronts on the particle beam path is exactly compensated by increased transit time of particles farther away from the beam axis, such that the broadening is determined solely by the size of the laser beam waist. The analytical model is validated by comparing it with numerical simulations of densitymatrix equations of motion using a split propagation technique and with experimental results.Physical Review A 07/2012; 86(1):012501. · 2.81 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: Experiments are carried out on the spectroscopy of the Foerster resonance lines Rb(37P) + Rb(37P) {yields} Rb(37S) + Rb(38S) and microwave transitions nP {yields} n Prime S, n Prime D between Rydberg states of cold rubidium atoms in a magnetooptical trap (MOT). Under ordinary conditions, all spectra exhibit a linewidth of 23 MHz irrespective of the interaction time between atoms or between atoms and microwave radiation, although the limit resonance width should be determined by the inverse interaction time. The analysis of experimental conditions has shown that the main source of line broadening is the inhomogeneous electric field of cold photoions that are generated under the excitation of initial nP Rydberg states by broadband pulsed laser radiation. The application of an additional electricfield pulse that rapidly extracts photoions produced by a laser pulse leads to a considerable narrowing of lines of microwave resonances and the Foerster resonance. Various sources of line broadening in cold Rydberg atoms are analyzed.Journal of Experimental and Theoretical Physics 02/2012; 114(1):14. DOI:10.1134/S1063776111160102 · 0.88 Impact Factor 
Article: Specifics of the Stochastic Ionization of a Rydberg Collision Complex with Forster Resonance
[Show abstract] [Hide abstract]
ABSTRACT: The physics of the formation of dynamic nonlinear resonances in an isolated Rydberg collisional complex is described. The development of the stochastic instability of Rydberg electron trajectories due to charge exchange in the complex is considered. The realization of the resonance in external statistic magnetic and electric fields is predicted to be accompanied by a significant narrowing of areas of stochastic motion with a concurrent decrease in the rates of the ionization of real quasimolecular systems proceeding through the migration over the Rydberg crowding of quantum states. Keywordsdynamic chaos–collisional complex–internal microwave field–stochastic ionization–Förster resonanceRussian Journal of Physical Chemistry B 08/2011; 5(4):537545. DOI:10.1134/S1990793111040117 · 0.36 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: Elementary processes in plasma phenomena traditionally attract physicist's attention. The channel of chargedparticle formation in Rydberg atom–atom thermal and subthermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions – associative ionization (AI). atomic ions – Penninglike ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H−, H+, H2, He,He+). Hydrogenlike alkalimetal Lithium (Li, Li+,Li−) and combinations (HeH+, LiH−, LiH+). There is a wide range of plasma parameters in which the Rydberg atoms of the elements mentioned above make the dominant contribution to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The latest stochastic version of chemiionisation (AI+PI) on Rydberg atomatom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modelled as diffusion within the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum. This may lead to anomalies of Rydberg atom spectra. Another result obtained in recent time is understanding that experimental results on chemiionization relate to the group of mixed Rydberg atom closed to the primary selected one. The Rydberg atoms ionisation theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in atomic physic.Journal of Physics Conference Series 12/2010; 257(1):012027. DOI:10.1088/17426596/257/1/012027  [Show abstract] [Hide abstract]
ABSTRACT: The formation of the Doppler contour P D(?) of absorption lines upon the excitation of particles in the volume of a gasdynamic beam by light propagating in a direction orthogonal (reduced) to the beam axis is analyzed. Integral representations of P D(?) are obtained for arbitrary relations between the nozzle outlet diameter D and the collimating aperture diameter B in the excitation region are obtained. An optimal configuration at which the reduced Doppler contour is the narrowest at a high density of beam particles is revealed to be B/D = 2.Optics and Spectroscopy 06/2010; 108(6):877882. DOI:10.1134/S0030400X10060093 · 0.72 Impact Factor 
Article: Rydberg atoms in astrophysics
[Show abstract] [Hide abstract]
ABSTRACT: Elementary processes in astrophysical phenomena traditionally attract researchers attention. At first this can be attributed to a group of hemiionization processes in Rydberg atom collisions with ground state parent atoms. This processes might be studied as a prototype of the elementary process of the radiation energy transformation into electrical one. The studies of nonlinear mechanics have shown that so called regime of dynamic chaos should be considered as typical, rather than exceptional situation in Rydberg atoms collision. From comparison of theory with experimental results it follows that a such kind of stochastic dynamic processes, occurred during the single collision, may be observed.New Astronomy Reviews 08/2009; 53:259–265. DOI:10.1016/j.newar.2009.07.003 · 6.43 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We investigate a possible mechanism for the autoionization of ultracold Rydberg gases, based on the resonant coupling of Rydberg pair states to the ionization continuum. Unlike an atomic collision where the wave functions begin to overlap, the mechanism considered here involves only the longrange dipole interaction and is in principle possible in a static system. It is related to the process of intermolecular Coulombic decay (ICD). In addition, we include the interactioninduced motion of the atoms and the effect of multiparticle systems in this work. We find that the probability for this ionization mechanism can be increased in manyparticle systems featuring attractive or repulsive van der Waals interactions. However, the rates for ionization through resonant dipole coupling are very low. It is thus unlikely that this process contributes to the autoionization of Rydberg gases in the form presented here, but it may still act as a trigger for secondary ionization processes. As our picture involves only binary interactions, it remains to be investigated if collective effects of an ensemble of atoms can significantly influence the ionization probability. Nevertheless our calculations may serve as a starting point for the investigation of more complex systems, such as the coupling of many pair states proposed in [Tanner et al., PRL 100, 043002 (2008)].The European Physical Journal D 04/2009; 53(3). DOI:10.1140/epjd/e2009001194 · 1.23 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: We have studied ionization of alkalimetal Rydberg atoms by blackbody radiation (BBR). The results of theoretical calculations of ionization rates of Li, Na, K, Rb and Cs Rydberg atoms are presented. The calculations have been performed for nS, nP and nD states for principal quantum numbers n = 8–65 at ambient temperatures of 77, 300 and 600 K. The calculations take into account the contributions of BBRinduced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of the measured ionization rates and their n dependence. A Cooper minimum for BBRinduced transitions between bound Rydberg states of Li has been found. The calculated ionization rates are compared with our earlier measurements of BBRinduced ionization rates of Na nS and nD Rydberg states with n = 8–20 at 300 K. Good agreement for all states except nS with n >15 is observed. Useful analytical formulae for quick estimates of BBR ionization rates of Rydberg atoms are presented. Application of BBRinduced ionization signal to measurements of collisional ionization rates is demonstrated.New Journal of Physics 01/2009; 11(1):13052. DOI:10.1088/13672630/11/1/013052 · 3.56 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: The formation of dark states under an interaction of degenerate atomic states with incoherent broadband radiation (white light) is discussed. A simple coupling scheme in a three level Λ system, which allows both qualitative and quantitative analysis, is discussed. We found a stationary solution of the optical Bloch equations in a broad excitation line approximation that describes the dynamics of the atomwhite light interaction and demonstrated its identity to a conventional dark state created with coherent laser fields. We than examine the efficiency of the population transfer induced by broadband radiation in a model Λ system and revealed that high efficiency (attaining 100%) of stimulated Raman adiabatic passagelike processes can be achieved with certain temporal control of light polarization. The corresponding criterion of adiabaticity was formulated and justified by means of numerical simulations.Physical Review A 11/2008; 78(5). DOI:10.1103/PhysRevA.78.053415 · 2.81 Impact Factor  [Show abstract] [Hide abstract]
ABSTRACT: This paper presents observations and an interpretation of laserinduced excitation and fluorescence in a ladder gef of three molecular levels [X 1Σg+(v″=0,J″=7), A 1Σu+(v′=10,J′=8), and 5 1Σg+(v=10,J=9), respectively] observed in a supersonic molecular beam of Na2. The ge coupling, by cw laser P, is strong. A weak cw laser S couples levels e and f. The basic observations are of levelf fluorescence as a function of the detuning of the S laser from resonance. The signal profile does not appear as the typical AutlerTownes doublet, but as a spectral structure, whose position, width, and shape depend upon several laser parameters. We interpret these results using a simple model of three nondegenerate quantum states coherently excited while undergoing population loss to states outside the threelevel system. We invoke the mechanism of optical pumping and evolution along adiabatic states, together with LandauZener transition probabilities. We also present results from numerical studies, which include all quantum states, all radiative couplings, coherent and incoherent, as well as convolutions with the relevant distribution functions (velocities and Zeeman sublevels). Although no adjustable parameters are involved, excellent agreement with the experiment is found. Since successive avoided crossings of adiabatic eigenvalues occur, interference effects may be relevant. Such effects are not expected to be visible in the present experiment, for reasons that are discussed. However, we discuss conditions which would allow resolving the interference structure experimentally. We also suggest possible interesting applications of the interference to rapidly switch off Rydberg state population or to control its spatial distribution.Physical Review A 11/2008; 78(5). DOI:10.1103/PhysRevA.78.053804 · 2.81 Impact Factor
Publication Stats
405  Citations  
107.43  Total Impact Points  
Top Journals
Institutions

2014

ITMO University
SanktPeterburg, St.Petersburg, Russia


19952014

Saint Petersburg State University
 • Faculty of Physics
 • Institute of Radiophysics
SanktPeterburg, St.Petersburg, Russia


20012013

University of Latvia
 Institute of Atomic Physics and Spectroscopy
Rija, Rīga, Latvia


2005

Technische Universität Kaiserslautern
 Fachbereich für Physik
Kaiserslautern, RhinelandPalatinate, Germany


19851998

Leningrad State University
SanktPeterburg, St.Petersburg, Russia
