W Scott Kassel

Villanova University, Norristown, Pennsylvania, United States

Are you W Scott Kassel?

Claim your profile

Publications (54)214.79 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: The aluminum complexes (LMes(2-))AlCl(THF) (3) and (LDipp(-))AlCl2 (4) (LMes = N,N'-bis[2,4,6-trimethylphenyl]-2,3-dimethyl-1,4-diazabutadiene, LDipp = N,N'-bis[2,6-diisopropylphenyl]-2,3-dimethyl-1,4-diazabutadiene) were prepared by direct reduction of the ligands with sodium metal followed by salt metathesis with AlCl3. The (LMes(-))AlCl2 (5) complex was prepared through one-electron oxidative functionalization of 3 with either AgCl or CuCl. Complex 3 was characterized using (1)H and (13)C NMR spectoscopies. Single-crystal X-ray diffraction analysis of the complexes revealed that 3-5 are all four-coordinate, with 3 exhibiting a trigonal pyramidal geometry, while 4 and 5 exist between trigonal pyramidal and tetrahedral. Notable in the LMes complexes 3 and 5 is a systematic lengthening of the C-Nimido bonds and shortening of the C-C bond in the N-C-C-N backbone with increased electron density on the ligand. The geometries of the complexes 3 and 5 were optimized using DFT, which showed primarily ligand-based frontier orbitals, supporting the analysis of the solid-state structural data. The complexes 3-5 were also characterized by electrochemistry. The cyclic voltamogram of complex 3 showed an oxidation processes at -0.94 and -0.03 V versus ferrocene, while complexes 4 and 5 exhibit both reduction (-1.37 and -1.34 V, respectively) and oxidation (-0.62 and -0.73 V, respectively) features.
    Inorganic Chemistry 03/2014; · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Two new N2O5 donor type ligands and their metal complexes with Cu(II) and Zn(II) salts were prepared and characterized by NMR, FT-IR, UV–Vis absorption spectroscopy, single crystal X-ray diffraction, CHN elemental analysis and cyclic voltammetry.
    Inorganica Chimica Acta. 01/2014; 414:115–120.
  • [show abstract] [hide abstract]
    ABSTRACT: Two new 1,1′-disubstituted cobaltocenium compounds, [(C5H4CHEt2)2Co][PF6] and [(C5H4SiMe3)2Co][PF6], were synthesized and the X-ray crystal structures were determined. The electrochemistry of seven 1,1′-disubstituted cobaltocenium compounds and the analogous ferrocene compounds was studied in methylene chloride using cyclic voltammetry. The affect of the various substituents on the redox potentials of these compounds was examined and trends in the electrochemical data were explored.
    Journal of Organometallic Chemistry 01/2014; 750:107–111. · 2.00 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Ruthenium drugs are potent anti-cancer agents, but inducing drug selectivity and enhancing their modest activity remain challenging. Slow Ru ligand loss limits the formation of free sites and subsequent binding to DNA base pairs. Herein, we designed a ligand that rapidly dissociates upon irradiation at low pH. Activation at low pH can lead to cancer selectivity, since many cancer cells have higher metabolism (and thus lower pH) than non-cancerous cells. We have used the pH sensitive ligand, 6,6'-dihydroxy-2,2'-bipyridine (66'bpy(OH)2), to generate [Ru(bpy)2(66'(bpy(OH)2)](2+), which contains two acidic hydroxyl groups with pKa1=5.26 and pKa2=7.27. Irradiation when protonated leads to photo-dissociation of the 66'bpy(OH)2 ligand. An in-depth study of the structural and electronic properties of the complex was carried out using X-ray crystallography, electrochemistry, UV/visible spectroscopy, and computational techniques. Notably, RuN bond lengths in the 66'bpy(OH)2 complex are longer (by ~0.3Å) than in polypyridyl complexes that lack 6 and 6' substitution. Thus, the longer bond length predisposes the complex for photo-dissociation and leads to the anti-cancer activity. When the complex is deprotonated, the 66'bpy(O(-))2 ligand molecular orbitals mix heavily with the ruthenium orbitals, making new mixed metal-ligand orbitals that lead to a higher bond order. We investigated the anti-cancer activities of [Ru(bpy)2(66'(bpy(OH)2)](2+), [Ru(bpy)2(44'(bpy(OH)2)](2+), and [Ru(bpy)3](2+) (44'(bpy(OH)2=4,4'-dihydroxy-2,2'-bipyridine) in HeLa cells, which have a relatively low pH. It is found that [Ru(bpy)2(66'(bpy(OH)2)](2+) is more cytotoxic than the other ruthenium complexes studied. Thus, we have identified a pH sensitive ruthenium scaffold that can be exploited for photo-induced anti-cancer activity.
    Journal of inorganic biochemistry 10/2013; 130C:103-111. · 3.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Two new tetraphosphine ligands, P(nC-PPh2)2N(Ph)2 (1,5-diphenyl-3,7-bis((diphenylphosphino)alkyl)-1,5-diaza-3,7-diphosphacyclooctane; alkyl = (CH2)2, n = 2 (L2); (CH2)3, n = 3 (L3)), have been synthesized. Coordination of these ligands to cobalt affords the complexes [Co(II)(L2)(CH3CN)](2+) and [Co(II)(L3)(CH3CN)](2+), which are reduced by KC8 to afford [Co(I)(L2)(CH3CN)](+) and [Co(I)(L3)(CH3CN)](+). Protonation of the Co(I) complexes affords [HCo(III)(L2)(CH3CN)](2+) and [HCo(III)(L3)(CH3CN)](2+). The cyclic voltammetry of [HCo(III)(L2)(CH3CN)](2+), analyzed using digital simulation, is consistent with an ErCrEr reduction mechanism involving reversible acetonitrile dissociation from [HCo(II)(L2)(CH3CN)](+) and resulting in formation of HCo(I)(L2). Reduction of HCo(III) also results in cleavage of the H-Co bond from HCo(II) or HCo(I), leading to formation of the Co(I) complex [Co(I)(L2)(CH3CN)](+). Under voltammetric conditions, the reduced cobalt hydride reacts with a protic solvent impurity to generate H2 in a monometallic process involving two electrons per cobalt. In contrast, under bulk electrolysis conditions, H2 formation requires only one reducing equivalent per [HCo(III)(L2)(CH3CN)](2+), indicating a bimetallic route wherein two cobalt hydride complexes react to form 2 equiv of [Co(I)(L2)(CH3CN)](+) and 1 equiv of H2. These results indicate that both HCo(II) and HCo(I) can be formed under electrocatalytic conditions and should be considered as potential catalytic intermediates.
    Inorganic Chemistry 08/2013; · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We report a rare example of a Cr-N2 complex supported by a 16-membered phosphorus macrocycle containing pendant amine bases. Reactivity with acid afforded hydrazinium and ammonium, representing the first example of N2 reduction by a Cr-N2 complex. Computational analysis examined the thermodynamically favored protonation steps of N2 reduction with Cr leading to the formation of hydrazine.
    Journal of the American Chemical Society 07/2013; · 10.68 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(PCy2Nt-Bu2)2](BF4)2 (PCy2Nt-Bu2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the NiII complex gives three isomers of the doubly protonated Ni0 complex [Ni(PCy2Nt-Bu2H)2](BF4)2. Using the pKa values and NiII/I and NiI/0 redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(PCy2Nt-Bu2)2]2+ was determined to be -7.9 kcal mol-1. The catalytic rate observed in dry acetonitrile for the oxidation of H2 depends on base size, with larger bases (NEt3, t-BuNH2) resulting in much slower catalysis than n-BuNH2. The addition of water accelerates the rate of catalysis by facilitating deprotonation of the hydrogen addition product before oxidation, especially for the larger bases NEt3 and t-BuNH2. This catalytic pathway, where deprotonation occurs prior to oxidation, leads to an overpotential that is 0.38 V lower compared to the pathway where oxidation precedes proton movement. Under the optimal conditions of 1.0 atm H2 using n-BuNH2 as a base and with added water, a turnover frequency of 58 s-1 is observed at 23 °C.
    Journal of the American Chemical Society 04/2013; · 10.68 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The addition of acids to ferrous dinitrogen complexes [FeX(N2)(P(Et)N(Me)P(Et))(dmpm)](+) (X = H, Cl, or Br; P(Et)N(Me)P(Et) = Et2PCH2N(Me)CH2PEt2; and dmpm = Me2PCH2PMe2) gives protonation at the pendent amine of the diphosphine ligand rather than at the dinitrogen ligand. This protonation increased the νN2 band of the complex by 25 cm(-1) and shifted the Fe(II/I) couple by 0.33 V to a more positive potential. A similar IR shift and a slightly smaller shift of the Fe(II/I) couple (0.23 V) was observed for the related carbonyl complex [FeH(CO)(P(Et)N(Me)P(Et))(dmpm)](+). [FeH(P(Et)N(Me)P(Et))(dmpm)](+) was found to bind N2 about three times more strongly than NH3. Computational analysis showed that coordination of N2 to Fe(II) centers increases the basicity of N2 (vs free N2) by 13 and 20 pKa units for the trans halides and hydrides, respectively. Although the iron center increases the basicity of the bound N2 ligand, the coordinated N2 is not sufficiently basic to be protonated. In the case of ferrous dinitrogen complexes containing a pendent methylamine, the amine site was determined to be the most basic site by 30 pKa units compared to the N2 ligand. The chemical reduction of these ferrous dinitrogen complexes was performed in an attempt to increase the basicity of the N2 ligand enough to promote proton transfer from the pendent amine to the N2 ligand. Instead of isolating a reduced Fe(0)-N2 complex, the reduction resulted in isolation and characterization of HFe(Et2PC(H)N(Me)CH2PEt2)(P(Et)N(Me)P(Et)), the product of oxidative addition of the methylene C-H bond of the P(Et)N(Me)P(Et) ligand to Fe.
    Inorganic Chemistry 03/2013; · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We investigate the relationship between intramolecular rotational dynamics and molecular and crystal structure in 4,4'-dimethoxyoctafluorobiphenyl. The techniques are electronic structure calculations, X-ray diffractometry, and 1H and 19F solid state nuclear magnetic resonance relaxation. We compute and measure barriers for coupled methyl group rotation and methoxy group libration. We compare the structure and the structure-motion relationship in 4,4'-dimethoxyoctafluorobiphenyl with the structure and the structure-motion relationship in related compounds in order to observe trends concerning the competition between intramolecular and intermolecular interactions. The 1H spin-lattice relaxation is nonexponential in both the high-temperature short-correlation time limit and in the low-temperature long-correlation time limit, albeit for different reasons. The 19F spin-lattice relaxation is nonexponential at low temperatures and it is exponential at high temperatures.
    The Journal of Physical Chemistry A 10/2012; · 2.77 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have synthesized the complex [Ru(bpy(OH)(2))(3)](2+) (bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine) containing ligands that can be readily deprotonated. Both experimental and computational techniques were utilized to perform a thorough analysis of the structural and electronic properties of the complex in both the protonated and deprotonated state. The complex [Ru(bpy(OMe)(2))(3)](2+) (bpy(OMe)(2) = 4,4'-dimethoxy-2,2'-bipyridine) was also synthesized and studied, because the bpy(OMe)(2) ligand has electron-donating properties like bpy(OH)(2), but does not contain deprotonatable groups. Cyclic voltammetry of [Ru(bpy(OH)(2))(3)](2+) yields a reversible Ru(III/II) wave that shifts 1.43 V to lower energy upon deprotonation of the complex. UV/Visible absorbance spectroscopy reveals several Metal-to-Ligand Charge Transfer (MLCT) transitions that shift to lower energy upon deprotonation of the complex. This observation is in contrast to mixed-ligand systems containing deprotonatable groups, such as [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy = 2,2'-bipyridine) that demonstrate different types of electronic transitions assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT). The more symmetrical nature of the tris-bpy(OH)(2) complex most likely prevents the metal molecular orbitals from significantly mixing with the molecular orbitals of the deprotonated ligand. Luminescence studies were carried out on [Ru(bpy(OH)(2))(3)](2+) and reveal a shift to lower energy and quenching of the excited state upon deprotonation in accordance with the energy gap law.
    Dalton Transactions 09/2012; 41(40):12514-23. · 3.81 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Sterically hindered (imino)pyridine 2-{(2,6-Me2-C6H3)NC(i-Pr)}C5H4N (1) was synthesized via addition of isolated imidoyl chloride to an in situ lithiated pyridine. Room temperature 1-D and 2-D NMR spectroscopy reveals two rapidly equilibrating isomers in solution. Interconversion of these two isomers was verified by 2D-EXSY NMR spectroscopy. Calculations at the B3LYP and MP2 levels of theory reveal four relevant isomers, with two atropisomers of E geometry (1-EA and 1-EB) and two atropisomers of Z geometry (1-ZA and 1-ZB). A simple carbon–carbon bond rotation to alter the orientation of the isopropyl group provides a fifth, related conformer, 1-ZB′, that is the most stable species at the MP2 level. The transition states for E/Z isomerization and the isomerization pathways between atropisomers have been characterized. Comparison of experimental and ab initio NMR chemical shifts in combination with NOE analysis suggests that isomers 1-EB and 1-ZB/1-ZB′ are the dominant species in our solution phase NMR studies. Our understanding of the isomerization behavior of 1 will help inform the future design of readily complexed, sterically hindered mono(imine) and bis(imine) ligands.
    RSC Advances 07/2012; 2(15):6237-6244. · 2.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Molybdenum and tungsten bis(dinitrogen) complexes of the formula M(N(2))(2)(PNP)(2) (M = Mo and W) and W(N(2))(2)(dppe)(PNP), supported by diphosphine ligands containing a pendant amine of the formula (CH(2)PR(2))(2)NR' = P(R)N(R')P(R) (R = Et, Ph; R' = Me, Bn), have been prepared by Mg reduction of metal halides under an N(2) atmosphere. The complexes have been characterized by NMR and IR spectroscopy, X-ray crystallography, and cyclic voltammetry. Reactivity of the target Mo and W bis(dinitrogen) compounds with CO results in the formation of dicarbonyl complexes.
    Dalton Transactions 02/2012; 41(15):4517-29. · 3.81 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The series of complexes Ni(P{sup tBu}N{sup R}), [Ni(P{sup tBu}N{sup R})]BF, [HNi(P{sup tBu}N{sup Ph})]BF, and [Co(P{sup tBu}N{sup Ph})]BF (P{sup tBu}N{sup R} = 1,5-dialkyl-3,7-tert-butyl-1,5-diaza-3,7-diphosphacyclooctane; alkyl (R) = phenyl, benzyl) have been synthesized and characterized. Spectroscopic, electrochemical, and X-Ray diffraction studies indicate these complexes are stable as a result of the tetrahedral arrangement of the two diphosphine ligands. Electrochemical oxidation of [HNi(P{sup tBu}N{sup Ph})]BF results in rapid proton transfer from nickel at a rate faster that can be observed on the CV timescale. Double protonation of Ni(P{sup tBu}N{sup BN}) forms the endo-endo, endo exo, and exo-exo isomers of [Ni(P{sup tBu}N{sup BN}HN{sup BN})](BF), which were found to be more stable towards loss of H than previously observed for similar complexes. The presence of Ni° {hor_ellipsis} HN bonds at the endo-protonation sites of [Ni(P{sup tBu}N{sup Bn}HN{sup BN})](BF) results in significant differences in the Ni(I/0) oxidation potentials of each of the isomers. The differences in E(I/0) values correspond to bond free energies of 7.4 and 3.7 kcal/mol for the first and second Ni° {hor_ellipsis} HN bonds of the endo-exo and endo-endo isomers, respectively. Computational studies of related model complexes reproduce these Ni° {hor_ellipsis} HN bonds within 1-2 kcal/mol.
    Organometallics 01/2012; 31(1). · 4.15 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)].
    Inorganic Chemistry 12/2011; 50(23):11914-28. · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Cis and trans-Cr-N(2) complexes supported by the diphosphine ligand P(Ph)(2)N(Bn)(2) have been prepared. Positioned pendant amines in the second coordination sphere influence the thermodynamically preferred geometric isomer. Electronic structure calculations indicate negligible Cr-N(2) back-bonding; rather, electronic polarization of N(2) ligand is thought to stabilize Cr-N(2) binding.
    Chemical Communications 11/2011; 47(44):12212-4. · 6.38 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A series of [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes containing the cyclic diphosphine ligands [P(R)(2)N(Ph)(2) = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(P(Bn)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) and [Ni(P(n-Bu)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P(Bn)(2)N(Ph)(2))(2)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(P(Cy)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2), all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H(2) in acidic acetonitrile solutions. The heterolytic cleavage of H(2) by [Ni(P(R)(2)N(Ph)(2))(2)(CH(3)CN)](BF(4))(2) complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(P(R)(2)N(Ph)(2))(2)](BF(4)) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H(2), suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.
    Inorganic Chemistry 11/2011; 50(21):10908-18. · 4.59 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A series of mononuclear nickel(II) bis(diphosphine) complexes [Ni(PPh2NC6H4X2)2](BF4)2 (PPh2NC6H4X2 = 1,5-di(para-X-phenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; X = OMe, Me, CH2P(O)(OEt)2, Br, and CF3) have been synthesized and characterized. X-ray diffraction studies reveal that [Ni(PPh2NC6H4Me2)2](BF4)2 and [Ni(PPh2NC6H4OMe2)2](BF4)2 are tetracoordinate with distorted square planar geometries. The Ni(II/I) and Ni(I/0) redox couples of each complex are electrochemically reversible in acetonitrile with potentials that are increasingly cathodic as the electron-donating character of X is increased. Each of these complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple. The catalytic rates generally increase as the electron-donating character of X is decreased, and this electronic effect results in the favorable but unusual situation of obtaining higher catalytic rates as overpotentials are decreased. Catalytic studies using acids with a range of pKa values reveal that turnover frequencies do not correlate with substrate acid pKa values but are highly dependent on the acid structure, with this effect being related to substrate size. Addition of water is shown to dramatically increase catalytic rates for all catalysts. With [Ni(PPh2NC6H4CH2P(O)(OEt)22)2](BF4)2 using [(DMF)H]+OTf− as the acid and with added water, a turnover frequency of 1850 s−1 was obtained.
    Journal of the American Chemical Society 03/2011; 133. · 10.68 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Intramolecular photocycloaddition (>290 nm) between a 1,3-enyne and a 2-pyridone is far more selective than the intermolecular version; a three-atom linkage both controls regiochemistry and separates the [2 + 2] and [4 + 4] pathways. All four head-to-head, head-to-tail, tail-to-head, and tail-to-tail tetherings have been investigated. Linkage via the ene of the enyne leads to [2 + 2] products regardless of alkene geometry, whereas linkage through the yne results in [4 + 4] cycloadducts. The bridged 1,2,5-cyclooctatriene products of [4 + 4] cycloaddition are unstable and undergo a subsequent [2 + 2] dimerization reaction.
    Organic Letters 03/2011; 13(9):2180-3. · 6.14 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We have synthesized the complex [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy =2,2'-bipyridine, bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine). Experimental results coupled with computational studies were utilized to investigate the structural and electronic properties of the complex, with particular attention paid toward the effects of deprotonation on these properties. The most distinguishing feature observed in the X-ray structural data is a shortening of the CO bond lengths in the modified ligand upon deprotonation. Similar results are also observed in the computational studies as the CO bond becomes double bond in character after deprotonating the complex. Electrochemically, the hydroxy-modified bipyridyl ligand plays a significant role in the redox properties of the complex. When protonated, the bpy(OH)(2) ligand undergoes irreversible reduction processes; however, when deprotonated, reduction of the substituted ligand is no longer observed, and several new irreversible oxidation processes associated with the modified ligand arise. pH studies indicate [Ru(bpy)(2)(bpy(OH)(2))](2+) has two distinct deprotonations at pK(a1) = 2.7 and pK(a2) = 5.8. The protonated [Ru(bpy)(2)(bpy(OH)(2))](2+) complex has a characteristic UV/Visible absorption spectrum similar to the well-studied complex [Ru(bpy)(3)](2+) with bands arising from Metal-to-Ligand Charge Transfer (MLCT) transitions. When the complex is deprotonated, the absorption spectrum is altered significantly and becomes heavily solvent dependent. Computational methods indicate that the deprotonated bpy(O(-))(2) ligand mixes heavily with the metal d orbitals leading to a new absorption manifold. The transitions in the complex have been assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT).
    Inorganic Chemistry 02/2011; 50(7):2754-63. · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The electrochemistry of 1,1′-bis(diphenylphosphino)cobaltocenium hexafluorophosphate ([dppc][PF6]), 1,1′-bis(dicyclohexylphosphino)cobaltocenium hexafluorophosphate ([dcpc][PF6]), 1,1′-bis(di-iso-propylphosphino)cobaltocenium hexafluorophosphate ([dippc][PF6]), and 1-(di-tert-butylphosphino)cobaltocenium hexafluorophosphate ([1-dtbpc][PF6]) was examined in methylene chloride with tetrabutylammonium hexafluorophosphate as the supporting electrolyte. A reversible reductive wave followed by an irreversible wave at more negative potentials was observed. Ten new phosphinothioyl ([dppcS2][PF6], [dcpcS2][PF6], [dippcS2][PF6], [1-dtbpcS][PF6], and 1,1′-bis(dicyclohexylphosphinothioyl)ferrocene) and phosphinoselenoyl derivatives ([dppcSe2][PF6], [dcpcSe2][PF6], [dippcSe2][PF6], [1-dtbpcSe][PF6], and 1,1′-bis(dicyclohexylphosphinoselenoyl)ferrocene) were prepared and characterized, and the structures of eight of these compounds were determined. The electrochemistry of these phosphinochalcogenyl cobaltocenium compounds, as well as the previously prepared [dppcO2][PF6], displayed two reversible reductive waves at potentials less negative than that of the free phosphines. A correlation was found to exist between the Hammett substituent constant σp and the reduction potentials of these compounds. In addition, the phosphinoselenoyl [dppcSe2][PF6], [dcpcSe2][PF6], and [dippcSe2][PF6] displayed an electrochemically irreversible oxidative wave, potentially indicating an intramolecular Se–Se bonded trication. The electrochemistry of three new and five previously reported transition metal complexes of the general formula [MnCl2(P∩P)][PF6] (M = Pd or Pt, n = 1, P∩P = dppc, dcpc or dippc; M = Au, n = 2, P∩P = dppc or dcpc)) was also examined displaying at least two reductive waves at potentials less negative than that of the free phosphines. Comparison of the electrochemical data with that previously obtained for analogous ferrocenes indicates that a correlation exists between the reduction potentials of the cobaltocenium phosphines and the potentials at which oxidation of the ferrocene phosphines occurs. In addition, the structure of [Au2Cl2(dppc)][PF6] was determined.
    Journal of Organometallic Chemistry - J ORGANOMET CHEM. 01/2011; 696(24):3882-3894.

Publication Stats

143 Citations
214.79 Total Impact Points

Institutions

  • 2001–2014
    • Villanova University
      • Department of Chemistry
      Norristown, Pennsylvania, United States
  • 2009–2011
    • Pacific Northwest National Laboratory
      • Chemical and Materials Sciences Division
      Richland, WA, United States
    • Bryn Mawr College
      • Department of Physics
      Bryn Mawr, Pennsylvania, United States
  • 2010
    • Lafayette College
      • Department of Chemistry
      Easton, PA, United States
  • 2005–2010
    • University of California, San Diego
      • Department of Chemistry and Biochemistry
      San Diego, CA, United States
  • 2008
    • Eastern Illinois University
      • Department of Chemistry
      Charleston, IL, United States
  • 2007
    • Virginia Polytechnic Institute and State University
      • Department of Chemistry
      Blacksburg, VA, United States