Orit A Glenn

Trinity Washington University, Washington, Washington, D.C., United States

Are you Orit A Glenn?

Claim your profile

Publications (71)195.82 Total impact

  • Jing Liu, Orit A Glenn, Duan Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal MR imaging is very challenging due to the movement of fetus and the breathing motion of the mother. Current clinical protocols involve quick 2D scouting scans to determine scan plane and often several attempts to reorient the scan plane when the fetus moves. This makes acquisition of fetal MR images clinically challenging and results in long scan times in order to obtain images that are of diagnostic quality. Compared to 2D imaging, 3D imaging of the fetus has many advantages such as higher SNR and ability to reformat images in multiple planes. However, it is more sensitive to motion and challenging for fetal imaging due to irregular fetal motion in addition to maternal breathing and cardiac motion. This aim of this study is to develop a fast 3D fetal imaging technique to resolve the challenge of imaging the moving fetus. This 3D imaging sequence has multi-echo radial sampling in-plane and conventional Cartesian encoding through plane, which provides motion robustness and high data acquisition efficiency. The utilization of a golden-ratio based projection profile allows flexible time-resolved image reconstruction with arbitrary temporal resolution at arbitrary time points as well as high signal-to-noise and contrast-to-noise ratio. The nice features of the developed image technique allow the 3D visualization of the movements occurring throughout the scan. In this study, we applied this technique to three human subjects for fetal MRI and achieved promising preliminary results of fetal brain, heart and lung imaging.
    Quantitative imaging in medicine and surgery. 04/2014; 4(2):123-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diagnosis of fetal isolated mild ventriculomegaly (IMVM) is the most common brain abnormality on prenatal ultrasound. We have set to identify potential alterations in brain development specific to IMVM in tissue volume and cortical and ventricular local surface curvature derived from in utero magnetic resonance imaging (MRI). Multislice 2D T2-weighted MRI were acquired from 32 fetuses (16 IMVM, 16 controls) between 22 and 25.5 gestational weeks. The images were motion-corrected and reconstructed into 3D volumes for volumetric and curvature analyses. The brain images were automatically segmented into cortical plate, cerebral mantle, deep gray nuclei, and ventricles. Volumes were compared between IMVM and control subjects. Surfaces were extracted from the segmentations for local mean surface curvature measurement on the inner cortical plate and the ventricles. Linear models were estimated for age-related and ventricular volume-associated changes in local curvature in both the inner cortical plate and ventricles. While ventricular volume was enlarged in IMVM, all other tissue volumes were not different from the control group. Ventricles increased in curvature with age along the atrium and anterior body. Increasing ventricular volume was associated with reduced curvature over most of the ventricular surface. The cortical plate changed in curvature with age at multiple sites of primary sulcal formation. Reduced cortical folding was detected near the parieto-occipital sulcus in IMVM subjects. While tissue volume appears to be preserved in brains with IMVM, cortical folding may be affected in regions where ventricles are dilated.
    Brain Structure and Function 05/2012; · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the diagnostic accuracy of fetal magnetic resonance (MR) imaging for malformations of cortical development by using postnatal MR imaging as reference standard. Eighty-one patients who had undergone fetal and postnatal MR imaging of the brain were identified in this institutional review board-approved, HIPAA-compliant study. Images were retrospectively reviewed in consensus by two pediatric neuroradiologists who were blinded to clinical information. Sensitivity and specificity were calculated according to retrospective review of the images and clinical reports for fetal MR images. The Fisher exact test was used to compare results for fetuses imaged before and after 24 gestational weeks and for image review versus clinical reports for fetal MR images. Median gestational age at fetal MR imaging was 25.0 weeks (range, 19.71-38.14 weeks). Postnatal MR imaging depicted 13 cases of polymicrogyria, three cases of schizencephaly, and 15 cases of periventricular nodular heterotopia. Sensitivity and specificity of fetal MR imaging were 85% and 100%, respectively, for polymicrogyria; 100% each for schizencephaly; and 73% and 92%, respectively, for heterotopia. When heterotopia was seen in two planes, specificity was 100% and sensitivity was 67%. Sensitivity for heterotopia decreased to 44% for fetuses younger than 24 weeks. According to reports for fetal MR images, prospective sensitivity and specificity, respectively, were 85% and 99% for polymicrogyria, 100% and 99% for schizencephaly, and 40% and 91% for heterotopia. Fetal MR imaging had the highest sensitivity for polymicrogyria and schizencephaly. Specificity was 100% for all cortical malformations when the abnormality was seen in two planes. Sensitivity for heterotopia was lower for fetuses younger than 24 weeks. Knowledge of the gestational age is important, especially for counseling patients about heterotopia.
    Radiology 04/2012; 263(3):843-55. · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tensor based morphometry (TBM) is a powerful approach to analyze local structural changes in brain anatomy. However, conventional scalar TBM methods do not completely capture all direction specific volume changes required to model complex changes such as those during brain growth. In this paper, we describe novel TBM descriptors for studying direction-specific changes in a subject population which can be used in conjunction with scalar TBM to analyze local patterns in directionality of volume change during brain development. We also extend the methodology to provide a new approach to mapping directional asymmetry in deformation tensors associated with the emergence of structural asymmetry in the developing brain. We illustrate the use of these methods by studying developmental patterns in the human fetal brain, in vivo. Results show that fetal brain development exhibits a distinct spatial pattern of anisotropic growth. The most significant changes in the directionality of growth occur in the cortical plate at major sulci. Our analysis also detected directional growth asymmetry in the peri-Sylvian region and the medial frontal lobe of the fetal brain.
    NeuroImage 04/2012; 63(2):947-58. · 6.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the prenatal MR imaging appearance of polymicrogyria with pathologic correlation in a fetus with congenital parvovirus B19 infection. Fetal MRI was performed at 23 gestational weeks in a fetus with nonimmune hydrops and normal appearing brain on prenatal US. Fetal MRI demonstrated bilateral polymicrogyria, which was confirmed by autopsy.To our knowledge, prenatal diagnosis of polymicrogyria in association with congenital parvovirus B19 infection has not been previously described. This case provides further evidence for brain abnormalities resulting from congenital parvovirus B19 infection, and suggests that fetal neuroimaging with MRI would be of value in suspected cases of congenital parvovirus infection. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
    Ultrasound in Obstetrics and Gynecology 02/2012; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To date, growth of the human fetal cerebellum has been estimated primarily from linear measurements from ultrasound and 2D magnetic resonance imaging (MRI). In this study, we use 3D analytical methods to develop normative growth trajectories for the cerebellum in utero. We measured cerebellar volume, linear dimensions, and local surface curvature from 3D reconstructed MRI of the human fetal brain (N = 46). We found that cerebellar volume increased approximately 7-fold from 20 to 31 gestational weeks. The better fit of the exponential curve (R (2) = 0.96) compared to the linear curve (R (2) = 0.92) indicated acceleration in growth. Within-subject cerebellar and cerebral volumes were highly correlated (R (2) = 0.94), though the cerebellar percentage of total brain volume increased from approximately 2.4% to 3.7% (R (2) = 0.63). Right and left hemispheric volumes did not significantly differ. Transcerebellar diameter, vermal height, and vermal anterior to posterior diameter increased significantly at constant rates. From the local curvature analysis, we found that expansion along the inferior and superior aspects of the hemispheres resulted in decreased convexity, which is likely due to the physical constraints of the dura surrounding the cerebellum and the adjacent brainstem. The paired decrease in convexity along the inferior vermis and increased convexity of the medial hemisphere represents development of the paravermian fissure, which becomes more visible during this period. In this 3D morphometric analysis of the human fetal cerebellum, we have shown that cerebellar growth is accelerating at a greater pace than the cerebrum and described how cerebellar growth impacts the shape of the structure.
    The Cerebellum 12/2011; 11(3):761-70. · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI). In this study, the volumes of major fetal zones-cortical plate (CP), subplate and intermediate zone (SP+IZ), germinal matrix (GMAT), deep gray nuclei (DG), and ventricles (VENT)--are calculated from automatic segmentation of motion-corrected, 3D reconstructed MRI. We analyzed 48 T2-weighted MRI scans from 39 normally developing fetuses in utero between 20.57 and 31.14 gestational weeks (GW). The supratentorial volume (STV) increased linearly at a rate of 15.22% per week. The SP+IZ (14.75% per week) and DG (15.56% per week) volumes increased at similar rates. The CP increased at a greater relative rate (18.00% per week), while the VENT (9.18% per week) changed more slowly. Therefore, CP increased as a fraction of STV and the VENT fraction declined. The total GMAT volume slightly increased then decreased after 25 GW. We did not detect volumetric sexual dimorphisms or total hemispheric volume asymmetries, which may emerge later in gestation. Further application of the automated fetal brain segmentation to later gestational ages will bridge the gap between volumetric studies of premature brain development and normal brain development in utero.
    International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 08/2011; 29(5):529-36. · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early cortical folding and the emergence of structural brain asymmetries have been previously analyzed by neuropathology as well as qualitative analysis of magnetic resonance imaging (MRI) of fetuses and preterm neonates. In this study, we present a dedicated image analysis framework and its application for the detection of folding patterns during the critical period for the formation of many primary sulci (20-28 gestational weeks). Using structural information from in utero MRI, we perform morphometric analysis of cortical plate surface development and modeling of early folding in the normal fetal brain. First, we identify regions of the fetal brain surface that undergo significant folding changes during this developmental period and provide precise temporal staging of these changes for each region of interest. Then, we highlight the emergence of interhemispheric structural asymmetries that may be related to future functional specialization of cortical areas. Our findings complement previous descriptions of early sulcogenesis based on neuropathology and qualitative evaluation of 2D in utero MRI by accurate spatial and temporal mapping of the emergence of individual sulci as well as structural brain asymmetries. The study provides the missing starting point for their developmental trajectories and extends our understanding of normal cortical folding.
    Cerebral Cortex 05/2011; 22(1):13-25. · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.
    IEEE transactions on medical imaging. 04/2011; 30(9):1704-12.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a free software tool which combines a set of algorithms that provide a framework for building 3D volumetric images of regions of moving anatomy using multiple fast multi-slice MRI studies. It is specifically motivated by the clinical application of unsedated fetal brain imaging, which has emerged as an important area for image analysis. The tool reads multiple DICOM image stacks acquired in any angulation into a consistent patient coordinate frame and allows the user to select regions to be locally motion corrected. It combines algorithms for slice motion estimation, bias field inconsistency correction and 3D volume reconstruction from multiple scattered slice stacks. The tool is built onto the RView (http://rview.colin-studholme.net) medical image display software and allows the user to inspect slice stacks, and apply both stack and slice level motion estimation that incorporates temporal constraints based on slice timing and interleave information read from the DICOM data. Following motion estimation an algorithm for bias field inconsistency correction provides the user with the ability to remove artifacts arising from the motion of the local anatomy relative to the imaging coils. Full D visualization of the slice stacks and individual slice orientations is provided to assist in evaluating the quality of the motion correction and final image reconstruction. The tool has been evaluated on a range of clinical data acquired on GE, Siemens and Philips MRI scanners.
    Proc SPIE 03/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding human brain development in utero and detecting cortical abnormalities related to specific clinical conditions is an important area of research. In this paper, we describe and evaluate methodology for detection and mapping of delays in early cortical folding from population-based studies of fetal brain anatomies imaged in utero. We use a general linear modeling framework to describe spatiotemporal changes in curvature of the developing brain and explore the ability to detect and localize delays in cortical folding in the presence of uncertainty in estimation of the fetal age. We apply permutation testing to examine which regions of the brain surface provide the most statistical power to detect a given folding delay at a given developmental stage. The presented methodology is evaluated using MR scans of fetuses with normal brain development and gestational ages ranging from 20.57 to 27.86 weeks. This period is critical in early cortical folding and the formation of the primary and secondary sulci. Finally, we demonstrate a clinical application of the framework for detection and localization of folding delays in fetuses with isolated mild ventriculomegaly.
    Proc SPIE 03/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal diffusion MR imaging was performed in 3 fetuses with CHD. ADC values in the periatrial WM, thalamus, and basal ganglia were compared with those in a control population of fetuses. Diffusivity in the periatrial WM and thalamus was higher for the fetuses with CHD compared with controls. These observations support the finding of abnormal in utero brain development in fetuses with CHD.
    American Journal of Neuroradiology 02/2011; 32(2):E21-2. · 3.17 Impact Factor
  • Orit Glenn
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion-weighted imaging has contributed to our understanding of fetal and neonatal brain development. This article will review the role of diffusion-weighted imaging and diffusion tensor imaging in fetuses and neonates, focusing primarily on normal brain developmental processes and then on pathologic processes that can be characterized using diffusion tensor imaging.
    Topics in magnetic resonance imaging: TMRI 02/2011; 22(1):3-9.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Existing knowledge of growth patterns in the living fetal human brain is based upon in utero imaging studies by magnetic resonance imaging (MRI) and ultrasound, which describe overall growth and provide mainly qualitative findings. However, formation of the complex folded cortical structure of the adult brain requires, in part, differential rates of regional tissue growth. To better understand these local tissue growth patterns, we applied recent advances in fetal MRI motion correction and computational image analysis techniques to 40 normal fetal human brains covering a period of primary sulcal formation (20-28 gestational weeks). Growth patterns were mapped by quantifying tissue locations that were expanding more or less quickly than the overall cerebral growth rate, which reveal increasing structural complexity. We detected increased local relative growth rates in the formation of the precentral and postcentral gyri, right superior temporal gyrus, and opercula, which differentiated between the constant growth rate in underlying cerebral mantle and the accelerating rate in the cortical plate undergoing folding. Analysis focused on the cortical plate revealed greater volume increases in parietal and occipital regions compared to the frontal lobe. Cortical plate growth patterns constrained to narrower age ranges showed that gyrification, reflected by greater growth rates, was more pronounced after 24 gestational weeks. Local hemispheric volume asymmetry was located in the posterior peri-Sylvian area associated with structural lateralization in the mature brain. These maps of fetal brain growth patterns construct a spatially specific baseline of developmental biomarkers with which to correlate abnormal development in the human.
    Journal of Neuroscience 02/2011; 31(8):2878-87. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampal formation plays an important role in learning and memory; however, data on its development in utero in humans are limited. This study was performed to evaluate hippocampal development in healthy fetuses using 3D reconstructed MRI. A cohort of 20 healthy pregnant women underwent prenatal MRI at a median GA of 24.9 wk (range, 21.3-31.9 wk); six of the women also had a second fetal MRI performed at a 6-wk interval. Routine 2D ultrafast T2-weighted images were used to reconstruct a 3D volume image, which was then used to manually segment the right and left hippocampi. Total hippocampal volume was calculated for each subject and compared against GA. There was a linear increase in total hippocampal volume with increasing GA (p < 0.001). For subjects scanned twice, there was an increase in hippocampal size on the second fetal MRI (p = 0.0004). This represents the first volumetric study of fetal hippocampal development in vivo. This normative volumetric data will be helpful for future comparison studies of suspected developmental abnormalities of hippocampal structure and function.
    Pediatric Research 01/2011; 69(5 Pt 1):425-9. · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B(1) coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B(1) field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T.
    Quantitative imaging in medicine and surgery. 01/2011; 1(1):24-30.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The process of brain growth involves the expansion of tissue at different rates at different points within the brain. As the layers within the developing brain evolve they can thicken or increase in area as the brain surface begins to fold. In this work we propose a new spatiotemporal formulation of tensor based volume morphometry that is derived in relation to tissue boundaries. This allows the study of the directional properties of tissue growth by separately characterizing the changes in area and thickness of the adjacent layers. The approach uses temporally weighted, local regression across a population of anatomies with different ages to model changes in components of the growth radial and tangential to the boundary between tissue layers. The formulation is applied to the study of sulcal formation from in-utero MR imaging of human fetal brain anatomy. Results show that the method detects differential growth of tissue layers adjacent to the cortical surface, particularly at sulcal locations, as early as 22 gestational weeks.
    Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 01/2011; 14(Pt 2):476-83.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies reported the development of methods for rigid registration of 2D fetal brain imaging data to correct for unconstrained fetal and maternal motion, and allow the formation of a true 3D image of conventional fetal brain anatomy from conventional MRI. Diffusion tensor imaging provides additional valuable insight into the developing brain anatomy, however the correction of motion artifacts in clinical fetal diffusion imaging is still a challenging problem. This is due to the challenging problem of matching lower signal-to-noise ratio diffusion weighted EPI slice data to recover between-slice motion, compounded by the presence of possible geometric distortions in the EPI data. In addition, the problem of estimating a diffusion model (such as a tensor) on a regular grid that takes into account the inconsistent spatial and orientation sampling of the diffusion measurements needs to be solved in a robust way. Previous methods have used slice to volume registration within the diffusion dataset. In this work, we describe an alternative approach that makes use of an alignment of diffusion weighted EPI slices to a conventional structural MRI scan which provides a geometrically correct reference image. After spatial realignment of each diffusion slice, a tensor field representing the diffusion profile is estimated by weighted least squared fitting. By qualitative and quantitative evaluation of the results, we confirm the proposed algorithm successfully corrects the motion and reconstructs the diffusion tensor field.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modeling and analysis of MR images of the developing human brain is a challenge due to rapid changes in brain morphology and morphometry. We present an approach to the construction of a spatiotemporal atlas of the fetal brain with temporal models of MR intensity, tissue probability and shape changes. This spatiotemporal model is created from a set of reconstructed MR images of fetal subjects with different gestational ages. Groupwise registration of manual segmentations and voxelwise nonlinear modeling allow us to capture the appearance, disappearance and spatial variation of brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific MR templates and tissue probability maps and use them to initialize automatic tissue delineation in new MR images. The choice of model parameters and the final performance are evaluated using clinical MR scans of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Experimental results indicate that quadratic temporal models can correctly capture growth-related changes in the fetal brain anatomy and provide improvement in accuracy of atlas-based tissue segmentation.
    NeuroImage 11/2010; 53(2):460-70. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The waiting period of subplate evolution is a critical phase for the proper formation of neural connections in the brain. During this time, which corresponds to 15 to 24 postconceptual weeks (PCW) in the human fetus, thalamocortical and cortico-cortical afferents wait in and are in part guided by molecules embedded in the extracellular matrix of the subplate. Recent advances in fetal MRI techniques now allow us to study the developing brain anatomy in 3D from in utero imaging. We describe a reliable segmentation protocol to delineate the boundaries of the subplate from T2-W MRI. The reliability of the protocol was evaluated in terms of intra-rater reproducibility on a subset of the subjects. We also present the first 3D quantitative analyses of temporal changes in subplate volume, thickness, and contrast from 18 to 24 PCW. Our analysis shows that firstly, global subplate volume increases in proportion with the supratentorial volume; the subplate remained approximately one-third of supratentorial volume. Secondly, we found both global and regional growth in subplate thickness and a linear increase in the median and maximum subplate thickness through the waiting period. Furthermore, we found that posterior regions--specifically the occipital pole, ventral occipito-temporal region, and planum temporale--of the developing brain underwent the most statistically significant increases in subplate thickness. During this period, the thickest region was the developing somatosensory/motor cortex. The subplate growth patterns reported here may be used as a baseline for comparison to abnormal fetal brain development.
    Brain Structure and Function 10/2010; 215(3-4):255-63. · 7.84 Impact Factor

Publication Stats

1k Citations
195.82 Total Impact Points

Institutions

  • 2012
    • Trinity Washington University
      Washington, Washington, D.C., United States
  • 2011–2012
    • University of Washington Seattle
      • Department of Pediatrics
      Seattle, WA, United States
    • University of Alberta
      Edmonton, Alberta, Canada
  • 2005–2012
    • University of California, San Francisco
      • • Department of Radiology and Biomedical Imaging
      • • Department of Pediatrics
      San Francisco, CA, United States
  • 2008
    • Yonsei University
      • Department of Electrical and Electronic Engineering
      Seoul, Seoul, South Korea