Anil Seth

University of Utah, Salt Lake City, Utah, United States

Are you Anil Seth?

Claim your profile

Publications (128)509.32 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present central velocity dispersions, masses, mass to light ratios ($M/L$s), and rotation strengths for 25 Galactic globular clusters. We derive radial velocities of 1951 stars in 12 globular clusters from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of $M/L$ with cluster mass and metallicity. The overall values of $M/L$ and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing $M/L$ with cluster mass, and lower than expected $M/L$s for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.
    11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.
    Nature 09/2014; 513(7518):398-400. · 38.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) we report the discovery of a pair of faint dwarf galaxies (CenA-MM-Dw1 and CenA-MM-Dw2) at a projected distance of $\sim$90 kpc from the nearby elliptical galaxy NGC5128 (CenA). We measure a tip of the red giant branch distance to each dwarf, finding $D=3.63 \pm 0.41$ Mpc for CenA-MM-Dw1 and $D=3.60 \pm 0.41$ Mpc for CenA-MM-Dw2, both of which are consistent with the distance to NGC5128. A qualitative analysis of the color magnitude diagrams indicates stellar populations consisting of an old, metal-poor red giant branch ($\gtrsim 12$ Gyr, [Fe/H]$\sim-1.7$ to -1.9). In addition, CenA-MM-Dw1 seems to host an intermediate-age population as indicated by its candidate asymptotic giant branch stars. The derived luminosities ($M_V=-10.9\pm0.3$ for CenA-MM-Dw1 and $-8.4\pm0.6$ for CenA-MM-Dw2) and half-light radii ($r_{h}=1.4\pm0.04$ kpc for CenA-MM-Dw1 and $0.36\pm0.08$ kpc for CenA-MM-Dw2) are consistent with those of Local Group dwarfs. CenA-MM-Dw1's low central surface brightness ($\mu_{V,0}=27.3\pm0.1$ mag/arcsec$^2$) places it among the faintest and most extended M31 satellites. Most intriguingly, CenA-MM-Dw1 and CenA-MM-Dw2 have a projected separation of only 3 arcmin ($\sim3$ kpc): we are possibly observing the first, faint satellite of a satellite in an external group of galaxies.
    The Astrophysical Journal Letters 09/2014; 795(2). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present scaling relations between structural properties of nuclear star clusters and their host galaxies for a sample of early-type dwarf galaxies observed as part of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Coma Cluster Survey. We have analysed the light profiles of 200 early-type dwarf galaxies in the magnitude range $16.0 < m_{F814W} < 22.6 $ mag, corresponding to $-19.0 < M_{F814W} < -12.4 $ mag. Nuclear star clusters are detected in 80% of the galaxies, thus doubling the sample of HST-observed early-type dwarf galaxies with nuclear star clusters. \changed{We confirm that the} nuclear star cluster detection fraction decreases strongly toward faint magnitudes. The luminosities of nuclear star clusters do not scale linearly with host galaxy luminosity. A linear fit yields L$_{nuc} \sim $L$_{gal}^{0.57\pm0.05}$. The nuclear star cluster-host galaxy luminosity scaling relation for low-mass early-type dwarf galaxies is consistent with formation by globular cluster accretion. We find that at similar luminosities, galaxies with higher S\'ersic indices have slightly more luminous nuclear star clusters. Rounder galaxies have on average more luminous clusters. Some of the nuclear star clusters are resolved, despite the distance of Coma. We argue that the relation between nuclear star cluster mass and size is consistent with both formation by globular cluster accretion and in situ formation. Our data are consistent with GC inspiraling being the dominant mechanism at low masses, although the observed trend with S\'ersic index suggests that in situ star formation is an important second order effect.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have measured stellar photometry with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, we measured photometry with simultaneous point spread function fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 milliarcsecond accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W~28, while in the crowded, high surface brightness bulge, the photometry reaches F475W~25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest resolution filters (WFC3/IR) providing color-magnitude diagrams that are up to 2.5 magnitudes deeper when compared with color-magnitude diagrams from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that largest sources of systematic error in the photometry are due to spatial variations in the point spread function models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.
    The Astrophysical Journal Supplement Series 09/2014; 215(1). · 16.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We search Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) broadband imaging data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey to identify detections of cataloged planetary nebulae (PNe). Of the 711 PNe currently in the literature within the PHAT footprint, we find 467 detected in the broadband. For these 467 we are able to refine their astrometric accuracy from ~0."3 to 0."05. Using the resolution of HST, we are able to show that 152 objects currently in the catalogs are definitively not PNe, and we show that 32 objects thought to be extended in ground-based images are actually point-like and therefore good PN candidates. We also find one PN candidate that is marginally resolved. If this is a PN, it is up to 0.7 pc in diameter. With our new photometric data, we develop a method of measuring the level of excitation in individual PNe by comparing broadband and narrowband imaging and describe the effects of excitation on a PN's photometric signature. Using the photometric properties of the known PNe in the PHAT catalogs, we search for more PN, but do not find any new candidates, suggesting that ground-based emission-line surveys are complete in the PHAT footprint to F475W $\simeq$ 24.
    The Astrophysical Journal 07/2014; 792(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the clustering of early-type stars younger than 300 Myr on galactic scales in M31. Based on the stellar photometric catalogs of the Panchromatic Hubble Andromeda Treasury program that also provides stellar parameters derived from the individual energy distributions, our analysis is focused on the young stars in three star-forming regions, located at galactocentric distances of about 5, 10, and 15 kpc, corresponding to the inner spiral arms, the ring structure, and the outer arm, respectively. We apply the two-point correlation function to our selected sample to investigate the clustering behavior of these stars across different time- and length-scales. We find that young stellar structure survives across the whole extent of M31 longer than 300 Myr. Stellar distribution in all regions appears to be self-similar, with younger stars being systematically more strongly clustered than the older, which are more dispersed. The observed clustering is interpreted as being induced by turbulence, the driving source for which is probably gravitational instabilities driven by the spiral arms, which are stronger closer to the galactic centre.
    07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a new faint dwarf galaxy, which we dub Scl-MM-Dw1, at a projected distance of $\sim$65 kpc from the spiral galaxy NGC 253. The discovery results from the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), a program with the Magellan/Megacam imager to study faint substructure in resolved stellar light around massive galaxies outside of the Local Group. We measure a tip of the red giant branch distance to Scl-MM-Dw1 of $D$=3.9$\pm$0.5 Mpc, consistent with that of NGC 253, making their association likely. The new dwarf's stellar population is complex, with an old, metal poor red giant branch ($\gtrsim$10 Gyr, [Fe/H]$\sim$$-$2), and an asymptotic giant branch with an age of $\sim$500 Myr. Scl-MM-Dw1 has a half-light radius of $r_{h}$=340$\pm$50 pc and an absolute magnitude of $M_{V}$=$-$10.3$\pm$0.6 mag, comparable to the Milky Way's satellites at the same luminosity. Once complete, our imaging survey of NGC 253 and other nearby massive galaxies will provide a census of faint substructure in halos beyond the Local Group, both to put our own environment into context and to confront models of hierarchical structure formation.
    The Astrophysical Journal Letters 06/2014; 793(1). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the central 10pc of our Galaxy lies a dense nuclear star cluster (NSC), and similar NSCs are found in most nearby galaxies. Studying the structure and kinematics of NSCs reveals the history of mass accretion of galaxy nuclei. Because the Milky Way (MW) NSC is at a distance of only 8kpc, we can spatially resolve the MWNSC on sub-pc scales. This makes the MWNSC a reference object for understanding the formation of all NSCs. We have used the NIR long-slit spectrograph ISAAC (VLT) in a drift-scan to construct an integral-field spectroscopic map of the central 9.5 x 8pc of our Galaxy. We use this data set to extract stellar kinematics both of individual stars and from the unresolved integrated light spectrum. We present a velocity and dispersion map from the integrated light and model these kinematics using kinemetry and axisymmetric Jeans models. We also measure CO bandhead strengths of 1,381 spectra from individual stars. We find kinematic complexity in the NSCs radial velocity map including a misalignment of the kinematic position angle by 9 degree counterclockwise relative to the Galactic plane, and indications for a rotating substructure perpendicular to the Galactic plane at a radius of 20" or 0.8pc. We determine the mass of the NSC within r = 4.2pc to 1.4 x 10^7 Msun. We also show that our kinematic data results in a significant underestimation of the supermassive black hole (SMBH) mass. The kinematic substructure and position angle misalignment may hint at distinct accretion events. This indicates that the MWNSC grew at least partly by the mergers of massive star clusters. Compared to other NSCs, the MWNSC is on the compact side of the r_eff - M_NSC relation. The underestimation of the SMBH mass might be caused by the kinematic misalignment and a stellar population gradient. But it is also possible that there is a bias in SMBH mass measurements obtained with integrated light.
    Astronomy and Astrophysics 06/2014; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-pc scales. We present NIR IFU data with a resolution of ~50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ~100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for non-circular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100-pc scales aligned with the megamaser disk. In contrast, the high ionization lines and Br-gamma trace outflow along the 100 pc-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Br-gamma have consistent properties between the two galaxies.
    The Astrophysical Journal 05/2014; 788(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present ages and masses for 601 star clusters in M31 from the analysis of the six filter integrated light measurements from near ultraviolet to near infrared wavelengths, made as part of the Panchromatic Hubble Andromeda Treasury (PHAT). We derive the ages and masses using a probabilistic technique, which accounts for the effects of stochastic sampling of the stellar initial mass function. Tests on synthetic data show that this method, in conjunction with the exquisite sensitivity of the PHAT observations and their broad wavelength baseline, provides robust age and mass recovery for clusters ranging from $\sim 10^2 - 2 \times 10^6 M_\odot$. We find that the cluster age distribution is consistent with being uniform over the past $100$ Myr, which suggests a weak effect of cluster disruption within M31. The age distribution of older ($>100$ Myr) clusters fall towards old ages, consistent with a power-law decline of index $-1$, likely from a combination of fading and disruption of the clusters. We find that the mass distribution of the whole sample can be well-described by a single power-law with a spectral index of $-1.9 \pm 0.1$ over the range of $10^3-3 \times 10^5 M_\odot$. However, if we subdivide the sample by galactocentric radius, we find that the age distributions remain unchanged. However, the mass spectral index varies significantly, showing best fit values between $-2.2$ and $-1.8$, with the shallower slope in the highest star formation intensity regions. We explore the robustness of our study to potential systematics and conclude that the cluster mass function may vary with respect to environment.
    02/2014; 786(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We characterize the bulge, disk, and halo subcomponents in the Andromeda galaxy (M31) over the radial range 4 < R_proj < 225 kpc. The cospatial nature of these subcomponents renders them difficult to disentangle using surface brightness (SB) information alone, especially interior to ~20 kpc. Our new decomposition technique combines information from the luminosity function (LF) of over 1.5 million bright (20 < m_814W < 22) stars from the Panchromatic Hubble Andromeda Treasury (PHAT) survey, radial velocities of over 5000 red giant branch stars in the same magnitude range from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey, and integrated I-band SB profiles from various sources. We use an affine-invariant Markov chain Monte Carlo algorithm to fit an appropriate toy model to these three data sets. The bulge, disk, and halo SB profiles are modeled as a Sersic, exponential, and cored power-law, respectively, and the LFs are modeled as broken power-laws. We present probability distributions for each of 32 parameters describing the SB profiles and LFs of the three subcomponents. We find that the number of stars with a disk-like LF is ~5% larger than the the number with disk-like (dynamically cold) kinematics, suggesting that some stars born in the disk have been dynamically heated to the point that they are kinematically indistinguishable from halo members. This is the first kinematical evidence for a "kicked-up disk" halo population in M31. The fraction of kicked-up disk stars is consistent with that found in simulations. We also find evidence for a radially varying disk LF, consistent with a negative metallicity gradient in the stellar disk.
    The Astrophysical Journal 10/2013; 779(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a remarkable ultra-compact dwarf galaxy around the massive Virgo elliptical galaxy NGC 4649 (M60), which we term M60-UCD1. With a dynamical mass of 2.0 x 10^8 M_sun but a half-light radius of only ~ 24 pc, M60-UCD1 is more massive than any ultra-compact dwarfs of comparable size, and is arguably the densest galaxy known in the local universe. It has a two-component structure well-fit by a sum of Sersic functions, with an elliptical, compact (r_h=14 pc; n ~ 3.3) inner component and a round, exponential, extended (r_h=49 pc) outer component. Chandra data reveal a variable central X-ray source with L_X ~ 10^38 erg/s that could be an active galactic nucleus associated with a massive black hole or a low-mass X-ray binary. Analysis of optical spectroscopy shows the object to be old (~> 10 Gyr) and of solar metallicity, with elevated [Mg/Fe] and strongly enhanced [N/Fe] that indicates light element self-enrichment; such self-enrichment may be generically present in dense stellar systems. The velocity dispersion (~ 70 km/s) and resulting dynamical mass-to-light ratio (M/L_V=4.9 +/- 0.7) are consistent with---but slightly higher than---expectations for an old, metal-rich stellar population with a Kroupa initial mass function. The presence of a massive black hole or a mild increase in low-mass stars or stellar remnants is therefore also consistent with this M/L_V. The stellar density of the galaxy is so high that no dynamical signature of dark matter is expected. However, the properties of M60-UCD1 suggest an origin in the tidal stripping of a nucleated galaxy with M_B ~ -18 to -19.
    The Astrophysical Journal Letters 07/2013; 775(1). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we term M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source, with a flux density of 18.7 +/- 1.9 microJy at 6.2 GHz and a flat radio spectrum (alpha=-0.24 +/- 0.42, for S_nu = nu^alpha). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio--X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue excess, H alpha emission, and optical variability. The radio, X-ray, and optical properties of M62-VLA1 are very similar to those for V404 Cyg, one of the best-studied quiescent stellar-mass black holes. We cannot yet rule out alternative scenarios for the radio source, such as a flaring neutron star or background galaxy; future observations are necessary to determine whether M62-VLA1 is indeed an accreting stellar-mass black hole.
    The Astrophysical Journal 06/2013; 777(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the alignment between H_2O megamaser disks on sub-pc scales with circumnuclear disks and bars on <500 pc scales observed with HST/WFC3. The HST imaging reveals young stars, indicating the presence of gas. The megamaser disks are not well aligned with the circumnuclear bars or disks as traced by stars in the HST images. We speculate on the implications of the observed misalignments for fueling supermassive black holes in gas-rich spiral galaxies. In contrast, we find a strong preference for the rotation axes of the megamaser disks to align with radio continuum jets observed on >50 pc scales, in those galaxies for which radio continuum detections are available. Sub-arcsecond observations of molecular gas with ALMA will enable a more complete understanding of the interplay between circumnuclear structures.
    The Astrophysical Journal 04/2013; 771(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t_age < 100 Myr) cluster sample. Our data provides the first constraints on two proposed relationships between the star formation rate of galaxies and the properties of their cluster systems in the low star formation rate regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, stochasticity does not fully account for the observed scatter in our data suggesting there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample of galaxies also provide constraints on cluster destruction models.
    American Astronomical Society, AAS Meeting #221, Long Beach, CA; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: We attempt to constrain the density profile of M31's inner stellar halo by tracing the surface density of blue horizontal branch (BHB) stars at galactocentric distances ranging from 2 kpc to 35 kpc. Our measurements make use of resolved stellar photometry from a section of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, supplemented by several archival Hubble Space Telescope observations. We find that the ratio of BHB to red giant stars is relatively constant outside of 1 kpc, suggesting that the BHB is as reliable a tracer of the halo population as the red giant branch. In the inner halo, we do not expect BHB stars to be produced by the high metallicity bulge and disk, making BHB stars a good candidate to be a reliable tracer of the stellar halo to much smaller galactocentric distances. If we assume a power-law profile, we can constrain the exponent of the power law to a precision of 10% outside of 3 kpc. Inside of 3 kpc, we find that the profile flattens significantly. Finally, assuming azimuthal symmetry and a constant mass-to-light ratio, we calculate a total halo stellar mass. We find these properties are comparable with both simulations of stellar halo formation formed by satellite disruption alone, and with simulations that include some in situ formation of halo stars. Support for this work is provided by NASA through grant GO-12055 from the Space Telescope Science Institute.
    01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hubble Space Telescope imaging surveys have shown that most late-type, bulgeless spiral galaxies contain compact nuclear star clusters. To examine the structure and stellar content of these objects in detail, we have obtained HST WFC3 images of a sample of 10 spiral galaxies containing bright nuclear star clusters, most at distances of less than 5 Mpc. Each galaxy was observed in seven filters spanning the near-UV to near-IR. GALFIT was used to fit parametric models to the surface brightness distribution of each cluster. In most cases, a single Sersic model provides an adequate description of the cluster structure, although some clusters required 2 Sersic components, and one object (NGC 4395) requires an additional pointlike component to represent the active nucleus. This poster will present the measured cluster properties including magnitudes, Sersic indices, effective radii, and surface brightness profiles. The structural parameters measured from these HST images will be used as input to future dynamical models in order to determine cluster masses and to constrain the possible presence of intermediate-mass black holes within the clusters.
    01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Chandra Local Volume Survey is a deep, volume-limited X-ray survey of five nearby galaxies (NGC 55, NGC 300, NGC 404, NGC 2403, and NGC 4214) with matched Hubble observations down to M_ 0, spanning a range stellar masses, metallicities, morphologies, and star formation histories. The X-ray emission detected in normal, non-active spiral galaxies such as these is dominated by X-ray binaries (XRBs). While studies of XRBs in the Milky Way often suffer from significant distance uncertainties and considerable extinction along Galactic lines of sight, these difficulties are minimized when studying X-ray sources in nearby galaxies: extinction effects are less problematic when observing galaxies away from the Galactic disk, and distance uncertainties are reduced since all X-ray sources are essentially equidistant from the observer. We present preliminary results correlating the X-ray source population properties of these five galaxies - such as the X-ray luminosity functions (XLFs) and radial X-ray source distributions down to ~10^36 erg/s - with the morphologies and recent star formation histories of the host galaxies.
    01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Large Synoptic Survey Telescope (LSST; http://lsst.org) will revolutionize our understanding of active galactic nuclei (AGN) and their environments. The decade-long survey will discover at least 10 million AGN across 18,000 square degrees on the sky, with between about 50 to 200 visits per source for each of the ugrizy filters. A combination of the LSST sub-arcsecond astrometry, six-band photometry, and unprecedented cadence will enable the most efficient AGN selection, with additional characterization through the use of sophisticated star-galaxy separation techniques. The time-domain nature of the survey will provide invaluable information on the physics of the AGN central engine, as well as on transient fueling events, and will allow real-time alerts that will trigger follow-up observations. Several LSST "deep drilling" fields will help discover the faintest AGN at high redshift, enhancing the value of current and planned multiwavelength pencil-beam surveys while providing hours-to-years temporal information on thousands of AGN. The wide ranges of both luminosity and redshift spanned by LSST, including the discovery of over 1000 quasars at z>6.5, will dramatically improve the quantification of the optical AGN luminosity function. Measurements of AGN clustering at high redshift will be used to determine the relationship between AGN and dark matter. The discovery of about 8000 gravitationally lensed quasars, including 1000 systems with measurable time delays, will place significantly tighter constraints on key cosmological parameters.
    01/2013;

Publication Stats

1k Citations
509.32 Total Impact Points

Institutions

  • 2011–2014
    • University of Utah
      • Department of Physics and Astronomy
      Salt Lake City, Utah, United States
  • 2006–2014
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2012
    • Michigan State University
      • Department of Physics and Astronomy
      East Lansing, MI, United States
  • 2006–2012
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 2003–2012
    • University of Washington Seattle
      • Department of Astronomy
      Seattle, Washington, United States