Anil C. Seth

University of Utah, Salt Lake City, Utah, United States

Are you Anil C. Seth?

Claim your profile

Publications (147)557.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the ratio (C/M) of carbon-rich to oxygen-rich thermally pulsing asymptotic giant branch(TP-AGB) stars in the disk of M31 using a combination of moderate-resolution optical spectroscopy from the Spectroscopic Landscape of Andromeda's Stellar Halo (SPLASH) survey and six-filter Hubble Space Telescope photometry from the Panchromatic Hubble Andromeda Treasury (PHAT) survey.Carbon stars were identified spectroscopically. Oxygen-rich M-stars were identifed using three different photometric definitions designed to mimic, and thus evaluate, selection techniques common in the literature. We calculate the C/M ratio as a function of galactocentric radius, present-day gas-phase oxygen abundance, stellar metallicity, age (via proxy defined as the ratio of TP-AGB stars to red giant branch, RGB, stars), and mean star formation rate over the last 400 Myr. We find statistically significant correlations between log(C/M) and all parameters. These trends are consistent across different M-star selection methods, though the fiducial values change. Of particular note is our observed relationship between log(C/M) and stellar metallicity, which is fully consistent with the trend seen across Local Group satellite galaxies. The fact that this trend persists in stellar populations with very different star formation histories indicates that the C/M ratio is governed by stellar properties alone.
    The Astrophysical Journal 07/2015; 810(1). DOI:10.1088/0004-637X/810/1/60 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NGC 4395 is a bulgeless spiral galaxy, harboring one of the nearest known type 1 Seyfert nuclei. Although there is no consensus on the mass of its central engine, several estimates suggest it to be one of the lightest massive black holes (MBHs) known. We present the first direct dynamical measurement of the mass of this MBH from a combination of two-dimensional gas kinematic data, obtained with the adaptive optics assisted near infrared integral field spectrograph Gemini/NIFS, and high-resolution multiband photometric data from Hubble Space Telescope's Wide Field Camera 3 (HST/WFC3). We use the photometric data to model the shape and stellar mass-to-light ratio (M/L) of the nuclear star cluster. From the Gemini/NIFS observations, we derive the kinematics of warm molecular hydrogen gas as traced by emission through the H$_2$ 1--0 S(1) transition. These kinematics show a clear rotational signal, with a position angle orthogonal to NGC 4395's radio jet. Our best fitting tilted ring models of the kinematics of the molecular hydrogen gas contain a black hole with mass $M=4_{-3}^{+8}\times 10^5$ M$_\odot$ (3$\sigma$ uncertainties) embedded in a nuclear star cluster of mass $M=2 \times 10^6$ M$_\odot$. Our black hole mass measurement is in excellent agreement with the reverberation mapping mass estimate of Peterson et al. (2005), but shows some tension with other mass measurement methods based on accretion signals.
    The Astrophysical Journal 07/2015; 809(1). DOI:10.1088/0004-637X/809/1/101 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the recent star formation history (SFH) across M31 using optical images taken with the \texit{Hubble Space Telescope} as part of the Panchromatic Hubble Andromeda Treasury (PHAT). We fit the color-magnitude diagrams in ~9000 regions that are ~100 pc $\times$ 100 pc in projected size, covering a 0.5 square degree area (~380 kpc$^2$, deprojected) in the NE quadrant of M31. We show that the SFHs vary significantly on these small spatial scales but that there are also coherent galaxy-wide fluctuations in the SFH back to ~500 Myr, most notably in M31's 10-kpc star-forming ring. We find that the 10-kpc ring is at least 400 Myr old, showing ongoing star formation over the past ~500 Myr. This indicates the presence of molecular gas in the ring over at least 2 dynamical times at this radius. We also find that the ring's position is constant throughout this time, and is stationary at the level of 1 km/s, although there is evidence for broadening of the ring due to diffusion of stars into the disk. Based on existing models of M31's ring features, the lack of evolution in the ring's position makes a purely collisional ring origin highly unlikely. We find that the global SFR has been fairly constant over the last ~500 Myr, though it does show a small increase at 50 Myr that is 1.3 times the average SFR over the past 100 Myr. During the last ~500 Myr, ~60% of all SF occurs in the 10-kpc ring. Finally, we find that in the past 100 Myr, the average SFR over the PHAT survey area is $0.28\pm0.03$ M$_\odot$ yr$^{-1}$ with an average deprojected intensity of $7.3 \times 10^{-4}$ M$_\odot$ yr$^{-1}$ kpc$^{-2}$, which yields a total SFR of ~0.7 M$_\odot$ yr$^{-1}$ when extrapolated to the entire area of M31's disk. This SFR is consistent with measurements from broadband estimates. [abridged]
    The Astrophysical Journal 04/2015; 805(2). DOI:10.1088/0004-637X/805/2/183 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an H$\alpha$-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ($M_{HI}/M_{star}$) of the five dwarfs are generally consistent with that of dwarf irregular galaxies in the Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC HVC274.68+74.70$-$123) has a very high $M_{HI}/M_{star}$$\sim$40. Despite the heterogenous nature of our search, we demonstrate that the current dwarf companions to UCHVCs are at the edge of detectability due to their low surface brightness, and that deeper searches are likely to find more stellar systems. If more sensitive searches do not reveal further stellar counterparts to UCHVCs, then the dearth of such systems around the Local Group may be in conflict with $\Lambda$CDM simulations.
    The Astrophysical Journal 03/2015; 806(1). DOI:10.1088/0004-637X/806/1/95 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun), observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each cluster's CMD to measure its mass function (MF) slope for stars >2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $\Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($\Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $\Gamma_{\rm MW} \sim+1.15\pm0.1$ and $\Gamma_{\rm LMC} \sim+1.3\pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. We have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs and show that commonly used UV- and Halpha-based star formation rates should be increased by a factor of ~1.3-1.5 and the number of stars with masses >8 Msun are ~25% fewer than expected for a Salpeter/Kroupa IMF. [abridged]
    The Astrophysical Journal 02/2015; 806(2). DOI:10.1088/0004-637X/806/2/198 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stellar kinematics of galactic disks are key to constraining disk formation and evolution processes. In this paper, for the first time, we measure the stellar age-velocity dispersion correlation in the inner 20 kpc (3.5 disk scale lengths) of M31 and show that it is dramatically different from that in the Milky Way. We use optical Hubble Space Telescope/Advanced Camera for Surveys photometry of 5800 individual stars from the Panchromatic Hubble Andromeda Treasury (PHAT) survey and Keck/DEIMOS radial velocity measurements of the same stars from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. We show that the average line-of-sight velocity dispersion is a steadily increasing function of stellar age exterior to R=10 kpc, increasing from 30 km/s for the young upper main sequence stars to 90 km/s for the old red giant branch stars. This monotonic increase implies that a continuous or recurring process contributed to the evolution of the disk. Both the slope and normalization of the dispersion vs. age relation are significantly larger than in the Milky Way, allowing for the possibility that the disk of M31 has had a more violent history than the disk of the Milky Way, more in line with cosmological predictions. We also find evidence for an inhomogeneous distribution of stars from a second kinematical component in addition to the dominant disk component. One of the largest and hottest high-dispersion patches is present in all age bins, and may be the signature of the end of the long bar.
    The Astrophysical Journal 02/2015; 803(1). DOI:10.1088/0004-637X/803/1/24 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31's inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $\alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
    The Astrophysical Journal 01/2015; 802(1). DOI:10.1088/0004-637X/802/1/49 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters residing in late-type spiral galaxies, in seven bands that span the near-ultraviolet to the near-infrared. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties. For six of the ten clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population which is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of nuclear clusters in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color-color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (> 1 Gyr) and a young population (~100-300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only.
    The Astronomical Journal 01/2015; 149(5). DOI:10.1088/0004-6256/149/5/170 · 4.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We construct a stellar cluster catalog for the Panchromatic Hubble Andromeda Treasury (PHAT) survey using image classifications collected from the Andromeda Project citizen science website. We identify 2,753 clusters and 2,270 background galaxies within ~0.5 deg$^2$ of PHAT imaging searched, or ~400 kpc$^2$ in deprojected area at the distance of the Andromeda galaxy (M31). These identifications result from 1.82 million classifications of ~20,000 individual images (totaling ~7 gigapixels) by tens of thousands of volunteers. We show that our crowd-sourced approach, which collects >80 classifications per image, provides a robust, repeatable method of cluster identification. The high spatial resolution Hubble Space Telescope images resolve individual stars in each cluster and are instrumental in the factor of ~6 increase in the number of clusters known within the survey footprint. We measure integrated photometry in six filter passbands, ranging from the near-UV to the near-IR. PHAT clusters span a range of ~8 magnitudes in F475W (g-band) luminosity, equivalent to ~4 decades in cluster mass. We perform catalog completeness analysis using >3000 synthetic cluster simulations to determine robust detection limits and demonstrate that the catalog is 50% complete down to ~500 solar masses for ages <100 Myr. We include catalogs of clusters, background galaxies, remaining unselected candidates, and synthetic cluster simulations, making all information publicly available to the community. The catalog published here serves as the definitive base data product for PHAT cluster science, providing a census of star clusters in an L$^*$ spiral galaxy with unmatched sensitivity and quality.
    The Astrophysical Journal 01/2015; 802(2). DOI:10.1088/0004-637X/802/2/127 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present central velocity dispersions, masses, mass to light ratios ($M/L$s), and rotation strengths for 25 Galactic globular clusters. We derive radial velocities of 1951 stars in 12 globular clusters from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of $M/L$ with cluster mass and metallicity. The overall values of $M/L$ and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing $M/L$ with cluster mass, and lower than expected $M/L$s for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.
    The Astronomical Journal 11/2014; 149(2). DOI:10.1088/0004-6256/149/2/53 · 4.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Within the central 10 pc of our Galaxy lies a dense cluster of stars, the nuclear star cluster, forming a distinct component of our Galaxy. Nuclear star clusters are common objects and are detected in ∼75% of nearby galaxies. It is, however, not fully understood how nuclear clusters form. Because the Milky Way nuclear star cluster is at a distance of only 8 kpc, we can spatially resolve its stellar populations and kinematics much better than in external galaxies. This makes the Milky Way nuclear star cluster a reference object for understanding the structure and assembly history of all nuclear star clusters.We have obtained an unparalleled data set using the near-infrared long-slit spectrograph ISAAC (VLT) in a novel drift-scan technique to construct an integral-field spectroscopic map of the central ∼10 × 8 pc of our Galaxy. To complement our data set we also observed fields out to a distance of ∼19 pc along the Galactic plane to disentangle the influence of the nuclear stellar disk.From this data set we extract a stellar kinematic map using the CO bandheads and an emission line kinematic map using H2 emission lines. Using the stellar kinematics, we set up a kinematic model for the Milky Way nuclear star cluster to derive its mass and constrain the central Galactic potential. Because the black hole mass in the Milky Way is precisely known, this kinematic data set will also serve as a benchmark for testing black hole mass modeling techniques used in external galaxies.
    Proceedings of the International Astronomical Union 10/2014; 9(S303):223-227. DOI:10.1017/S1743921314000611
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.
    Nature 09/2014; 513(7518):398-400. DOI:10.1038/nature13762 · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) we report the discovery of a pair of faint dwarf galaxies (CenA-MM-Dw1 and CenA-MM-Dw2) at a projected distance of $\sim$90 kpc from the nearby elliptical galaxy NGC5128 (CenA). We measure a tip of the red giant branch distance to each dwarf, finding $D=3.63 \pm 0.41$ Mpc for CenA-MM-Dw1 and $D=3.60 \pm 0.41$ Mpc for CenA-MM-Dw2, both of which are consistent with the distance to NGC5128. A qualitative analysis of the color magnitude diagrams indicates stellar populations consisting of an old, metal-poor red giant branch ($\gtrsim 12$ Gyr, [Fe/H]$\sim-1.7$ to -1.9). In addition, CenA-MM-Dw1 seems to host an intermediate-age population as indicated by its candidate asymptotic giant branch stars. The derived luminosities ($M_V=-10.9\pm0.3$ for CenA-MM-Dw1 and $-8.4\pm0.6$ for CenA-MM-Dw2) and half-light radii ($r_{h}=1.4\pm0.04$ kpc for CenA-MM-Dw1 and $0.36\pm0.08$ kpc for CenA-MM-Dw2) are consistent with those of Local Group dwarfs. CenA-MM-Dw1's low central surface brightness ($\mu_{V,0}=27.3\pm0.1$ mag/arcsec$^2$) places it among the faintest and most extended M31 satellites. Most intriguingly, CenA-MM-Dw1 and CenA-MM-Dw2 have a projected separation of only 3 arcmin ($\sim3$ kpc): we are possibly observing the first, faint satellite of a satellite in an external group of galaxies.
    The Astrophysical Journal Letters 09/2014; 795(2). DOI:10.1088/2041-8205/795/2/L35 · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present scaling relations between structural properties of nuclear star clusters and their host galaxies for a sample of early-type dwarf galaxies observed as part of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Coma Cluster Survey. We have analysed the light profiles of 200 early-type dwarf galaxies in the magnitude range $16.0 < m_{F814W} < 22.6 $ mag, corresponding to $-19.0 < M_{F814W} < -12.4 $ mag. Nuclear star clusters are detected in 80% of the galaxies, thus doubling the sample of HST-observed early-type dwarf galaxies with nuclear star clusters. \changed{We confirm that the} nuclear star cluster detection fraction decreases strongly toward faint magnitudes. The luminosities of nuclear star clusters do not scale linearly with host galaxy luminosity. A linear fit yields L$_{nuc} \sim $L$_{gal}^{0.57\pm0.05}$. The nuclear star cluster-host galaxy luminosity scaling relation for low-mass early-type dwarf galaxies is consistent with formation by globular cluster accretion. We find that at similar luminosities, galaxies with higher S\'ersic indices have slightly more luminous nuclear star clusters. Rounder galaxies have on average more luminous clusters. Some of the nuclear star clusters are resolved, despite the distance of Coma. We argue that the relation between nuclear star cluster mass and size is consistent with both formation by globular cluster accretion and in situ formation. Our data are consistent with GC inspiraling being the dominant mechanism at low masses, although the observed trend with S\'ersic index suggests that in situ star formation is an important second order effect.
    Monthly Notices of the Royal Astronomical Society 09/2014; 445(3). DOI:10.1093/mnras/stu1906 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have measured stellar photometry with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury (PHAT) survey, we measured photometry with simultaneous point spread function fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 milliarcsecond accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W~28, while in the crowded, high surface brightness bulge, the photometry reaches F475W~25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest resolution filters (WFC3/IR) providing color-magnitude diagrams that are up to 2.5 magnitudes deeper when compared with color-magnitude diagrams from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that largest sources of systematic error in the photometry are due to spatial variations in the point spread function models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.
    The Astrophysical Journal Supplement Series 09/2014; 215(1). DOI:10.1088/0067-0049/215/1/9 · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg$^2$ field with the SDSS-III BOSS spectrograph. The RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.
    The Astrophysical Journal Supplement Series 08/2014; 216(1). DOI:10.1088/0067-0049/216/1/4 · 14.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We search Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) broadband imaging data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey to identify detections of cataloged planetary nebulae (PNe). Of the 711 PNe currently in the literature within the PHAT footprint, we find 467 detected in the broadband. For these 467 we are able to refine their astrometric accuracy from ~0."3 to 0."05. Using the resolution of HST, we are able to show that 152 objects currently in the catalogs are definitively not PNe, and we show that 32 objects thought to be extended in ground-based images are actually point-like and therefore good PN candidates. We also find one PN candidate that is marginally resolved. If this is a PN, it is up to 0.7 pc in diameter. With our new photometric data, we develop a method of measuring the level of excitation in individual PNe by comparing broadband and narrowband imaging and describe the effects of excitation on a PN's photometric signature. Using the photometric properties of the known PNe in the PHAT catalogs, we search for more PN, but do not find any new candidates, suggesting that ground-based emission-line surveys are complete in the PHAT footprint to F475W $\simeq$ 24.
    The Astrophysical Journal 07/2014; 792(2). DOI:10.1088/0004-637X/792/2/121 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the clustering of early-type stars younger than 300 Myr on galactic scales in M31. Based on the stellar photometric catalogs of the Panchromatic Hubble Andromeda Treasury program that also provides stellar parameters derived from the individual energy distributions, our analysis is focused on the young stars in three star-forming regions, located at galactocentric distances of about 5, 10, and 15 kpc, corresponding to the inner spiral arms, the ring structure, and the outer arm, respectively. We apply the two-point correlation function to our selected sample to investigate the clustering behavior of these stars across different time- and length-scales. We find that young stellar structure survives across the whole extent of M31 longer than 300 Myr. Stellar distribution in all regions appears to be self-similar, with younger stars being systematically more strongly clustered than the older, which are more dispersed. The observed clustering is interpreted as being induced by turbulence, the driving source for which is probably gravitational instabilities driven by the spiral arms, which are stronger closer to the galactic centre.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a new faint dwarf galaxy, which we dub Scl-MM-Dw1, at a projected distance of $\sim$65 kpc from the spiral galaxy NGC 253. The discovery results from the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), a program with the Magellan/Megacam imager to study faint substructure in resolved stellar light around massive galaxies outside of the Local Group. We measure a tip of the red giant branch distance to Scl-MM-Dw1 of $D$=3.9$\pm$0.5 Mpc, consistent with that of NGC 253, making their association likely. The new dwarf's stellar population is complex, with an old, metal poor red giant branch ($\gtrsim$10 Gyr, [Fe/H]$\sim$$-$2), and an asymptotic giant branch with an age of $\sim$500 Myr. Scl-MM-Dw1 has a half-light radius of $r_{h}$=340$\pm$50 pc and an absolute magnitude of $M_{V}$=$-$10.3$\pm$0.6 mag, comparable to the Milky Way's satellites at the same luminosity. Once complete, our imaging survey of NGC 253 and other nearby massive galaxies will provide a census of faint substructure in halos beyond the Local Group, both to put our own environment into context and to confront models of hierarchical structure formation.
    The Astrophysical Journal Letters 06/2014; 793(1). DOI:10.1088/2041-8205/793/1/L7 · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the central 10pc of our Galaxy lies a dense nuclear star cluster (NSC), and similar NSCs are found in most nearby galaxies. Studying the structure and kinematics of NSCs reveals the history of mass accretion of galaxy nuclei. Because the Milky Way (MW) NSC is at a distance of only 8kpc, we can spatially resolve the MWNSC on sub-pc scales. This makes the MWNSC a reference object for understanding the formation of all NSCs. We have used the NIR long-slit spectrograph ISAAC (VLT) in a drift-scan to construct an integral-field spectroscopic map of the central 9.5 x 8pc of our Galaxy. We use this data set to extract stellar kinematics both of individual stars and from the unresolved integrated light spectrum. We present a velocity and dispersion map from the integrated light and model these kinematics using kinemetry and axisymmetric Jeans models. We also measure CO bandhead strengths of 1,381 spectra from individual stars. We find kinematic complexity in the NSCs radial velocity map including a misalignment of the kinematic position angle by 9 degree counterclockwise relative to the Galactic plane, and indications for a rotating substructure perpendicular to the Galactic plane at a radius of 20" or 0.8pc. We determine the mass of the NSC within r = 4.2pc to 1.4 x 10^7 Msun. We also show that our kinematic data results in a significant underestimation of the supermassive black hole (SMBH) mass. The kinematic substructure and position angle misalignment may hint at distinct accretion events. This indicates that the MWNSC grew at least partly by the mergers of massive star clusters. Compared to other NSCs, the MWNSC is on the compact side of the r_eff - M_NSC relation. The underestimation of the SMBH mass might be caused by the kinematic misalignment and a stellar population gradient. But it is also possible that there is a bias in SMBH mass measurements obtained with integrated light.
    Astronomy and Astrophysics 06/2014; 570. DOI:10.1051/0004-6361/201423777 · 4.48 Impact Factor

Publication Stats

2k Citations
557.55 Total Impact Points

Institutions

  • 2011–2015
    • University of Utah
      • Department of Physics and Astronomy
      Salt Lake City, Utah, United States
  • 2003–2012
    • University of Washington Seattle
      • Department of Astronomy
      Seattle, Washington, United States
  • 2006–2011
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany