David J Rodriguez

Institute for Systems Biology, Seattle, Washington, United States

Are you David J Rodriguez?

Claim your profile

Publications (4)63.22 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. We demonstrate that macrophage lipid body formation can be induced by modified lipoproteins or by inflammatory Toll-like receptor agonists. We used an unbiased approach to study the overlap in these pathways to identify regulators that control foam cell formation and atherogenesis. An analysis method integrating epigenomic and transcriptomic datasets with a transcription factor (TF) binding site prediction algorithm suggested that the TF ATF3 may regulate macrophage foam cell formation. Indeed, we found that deletion of this TF results in increased lipid body accumulation, and that ATF3 directly regulates transcription of the gene encoding cholesterol 25-hydroxylase. We further showed that production of 25-hydroxycholesterol (25-HC) promotes macrophage foam cell formation. Finally, deletion of ATF3 in Apoe(-/-) mice led to in vivo increases in foam cell formation, aortic 25-HC levels, and disease progression. These results define a previously unknown role for ATF3 in controlling macrophage lipid metabolism and demonstrate that ATF3 is a key intersection point for lipid metabolic and inflammatory pathways in these cells.
    Journal of Experimental Medicine 04/2012; 209(4):807-17. DOI:10.1084/jem.20111202 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammasomes are cytosolic protein complexes that regulate caspase-1 activation and the secretion of interleukin-1β (IL-1β) and IL-18. Several different inflammasome complexes have been identified, but the NLRP3 inflammasome is particularly notable because of its central role in diseases of inflammation. Recent work has demonstrated an essential role for the NLRP3 inflammasome in host defense against influenza virus. We show here that two other RNA viruses, encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV), activate the NLRP3 inflammasome in dendritic cells and macrophages through a mechanism requiring viral replication. Inflammasome activation in response to both viruses does not require MDA5 or RIG-I signaling. Despite the ability of the NLRP3 inflammasome to detect EMCV and VSV, wild-type and caspase-1-deficient mice were equally susceptible to infection with both viruses. These findings indicate that the NLRP3 inflammasome may be a common pathway for RNA virus detection, but its precise role in the host response may be variable.
    Journal of Virology 02/2011; 85(9):4167-72. DOI:10.1128/JVI.01687-10 · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a microfluidic immunoassay device that permits sensitive and quantitative multiplexed protein measurements on nano-liter-scale samples. The device exploits the combined power of integrated microfluidics and optically encoded microspheres to create an array of approximately 100-microm(2) sensors functionalized with capture antibodies directed against distinct targets. This strategy overcomes the need for performing biochemical coupling of affinity reagents to the device substrate, permits multiple proteins to be detected in a nano-liter-scale sample, is scalable to large numbers of samples, and has the required sensitivity to measure the abundance of proteins derived from single mammalian cells. The sensitivity of the device is sufficient to detect 1000 copies of tumor necrosis factor (TNF) in a volume of 4.7nl.
    Analytical Biochemistry 03/2009; 386(1):30-5. DOI:10.1016/j.ab.2008.12.012 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although iron is required to sustain life, its free concentration and metabolism have to be tightly regulated. This is achieved through a variety of iron-binding proteins including transferrin and ferritin. During infection, bacteria acquire much of their iron from the host by synthesizing siderophores that scavenge iron and transport it into the pathogen. We recently demonstrated that enterochelin, a bacterial catecholate siderophore, binds to the host protein lipocalin 2 (ref. 5). Here, we show that this event is pivotal in the innate immune response to bacterial infection. Upon encountering invading bacteria the Toll-like receptors on immune cells stimulate the transcription, translation and secretion of lipocalin 2; secreted lipocalin 2 then limits bacterial growth by sequestrating the iron-laden siderophore. Our finding represents a new component of the innate immune system and the acute phase response to infection.
    Nature 01/2005; 432(7019):917-21. DOI:10.1038/nature03104 · 42.35 Impact Factor