Nisha Shah

University of Minnesota Twin Cities, Minneapolis, MN, United States

Are you Nisha Shah?

Claim your profile

Publications (6)30.27 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-7 is an important cytokine for lymphocyte differentiation. Similar to what occurs in vivo, human CD19⁺ cells developing in human/murine xenogeneic cultures show differential expression of the IL-7 receptor α (IL-7Rα) chain (CD127). We now describe the relationship between CD127 expression/signaling and Ig gene rearrangement. In the present study, < 10% of CD19⁺CD127⁺ and CD19⁺CD127⁻ populations had complete VDJ(H) rearrangements. IGH locus conformation measurements by 3D FISH revealed that CD127⁺ and CD127⁻ cells were less contracted than pediatric BM pro-B cells that actively rearrange the IGH locus. Complete IGH rearrangements in CD127⁺ and CD127⁻ cells had smaller CDR3 lengths and fewer N-nucleotide insertions than pediatric BM B-lineage cells. Despite the paucity of VDJ(H) rearrangements, microarray analysis indicated that CD127⁺ cells resembled large pre-B cells, which is consistent with their low level of Ig light-chain rearrangements. Unexpectedly, CD127⁻ cells showed extensive Ig light-chain rearrangements in the absence of IGH rearrangements and resembled small pre-B cells. Neutralization of IL-7 in xenogeneic cultures led to an increase in Ig light-chain rearrangements in CD127⁺ cells, but no change in complete IGH rearrangements. We conclude that IL-7-mediated suppression of premature Ig light-chain rearrangement is the most definitive function yet described for IL-7 in human B-cell development.
    Blood 06/2011; 118(8):2116-27. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.
    The Journal of Immunology 06/2008; 180(12):8109-17. · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of IL-7 in lymphoid development and T cell homeostasis has been extensively documented. However, the role of IL-7 in human B cell development remains unclear. We used a xenogeneic human cord blood stem cell/murine stromal cell culture to study the development of CD19+ B-lineage cells expressing the IL-7R. CD34+ cord blood stem cells were cultured on the MS-5 murine stromal cell line supplemented with human G-CSF and stem cell factor. Following an initial expansion of myeloid/monocytoid cells within the initial 2 wk, CD19+/pre-BCR- pro-B cells emerged, of which 25-50% expressed the IL-7R. FACS-purified CD19+/IL-7R+ cells were larger and, when replated on MS-5, underwent a dose-dependent proliferative response to exogenous human IL-7 (0.01-10.0 ng/ml). Furthermore, STAT5 phosphorylation was induced by the same concentrations of human IL-7. CD19+/IL-7R- cells were smaller and did not proliferate on MS-5 after stimulation with IL-7. In a search for cytokines that promote human B cell development in the cord blood stem cell/MS-5 culture, we made the unexpected finding that murine IL-7 plays a role. Murine IL-7 was detected in MS-5 supernatants by ELISA, recombinant murine IL-7 induced STAT5 phosphorylation in CD19+/IL-7R+ pro-B cells and human B-lineage acute lymphoblastic leukemias, and neutralizing anti-murine IL-7 inhibited development of CD19+ cells in the cord blood stem cell/MS-5 culture. Our results support a model wherein IL-7 transduces a replicative signal to normal human B-lineage cells that is complemented by additional stromal cell-derived signals essential for normal human B cell development.
    The Journal of Immunology 01/2006; 175(11):7325-31. · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have established human B-lineage (BLIN) acute lymphoblastic leukemia cell lines that retain a dependency on fibroblast monolayers for survival and proliferation. Eight hours following removal from adherent cell contact BLIN cells undergo a decrease in mitochondrial transmembrane potential and an increase in annexin V binding. Unexpectedly, the caspase-9 inhibitor (C9i) benzyloxycarbonyl-Leu-Glu-His-Asp-fluoromethylketone enhanced the appearance of apoptotic cells within 8 hours following removal of BLIN cells from fibroblast monolayers. C9i enhancement of apoptosis was dose dependent and did not occur with irreversible inhibitors of caspases-2, -3, -6, and -8. C9i also enhanced apoptosis in cord blood-derived CD19(+) B-lineage cells (but not myeloid cells) removed from murine stromal cells. Longer exposure (> 18 hours) to C9i culminated in apoptosis in a panel of B-lineage acute lymphoblastic leukemia (ALL) cell lines in the presence or absence of fibroblast monolayers, as well as in 2 proliferating leukemic cell lines (RAMOS and CEM). BLIN-4L cells made deficient in caspase-9 by RNA interference exhibited no resistance to apoptotic signals and actually showed increased apoptotic sensitivity to staurosporine. These collective results suggest that a 4-amino acid caspase inhibitor of caspase-9 can promote apoptosis and that at least some types of apoptotic pathways in B-lineage ALL do not require caspase-9.
    Blood 12/2004; 104(9):2873-8. · 9.78 Impact Factor
  • Source
  • Source

Publication Stats

64 Citations
30.27 Total Impact Points

Top Journals


  • 2004–2008
    • University of Minnesota Twin Cities
      • Department of Laboratory Medicine and Pathology
      Minneapolis, MN, United States