Jung W Park

University of California, Berkeley, Berkeley, MO, United States

Are you Jung W Park?

Claim your profile

Publications (4)32.94 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing is generally controlled by proteins that bind directly to regulatory sequence elements and either activate or repress splicing of adjacent splice sites in a target pre-mRNA. Here, we have combined RNAi and mRNA-seq to identify exons that are regulated by Pasilla (PS), the Drosophila melanogaster ortholog of mammalian NOVA1 and NOVA2. We identified 405 splicing events in 323 genes that are significantly affected upon depletion of ps, many of which were annotated as being constitutively spliced. The sequence regions upstream and within PS-repressed exons and downstream from PS-activated exons are enriched for YCAY repeats, and these are consistent with the location of these motifs near NOVA-regulated exons in mammals. Thus, the RNA regulatory map of PS and NOVA1/2 is highly conserved between insects and mammals despite the fact that the target gene orthologs regulated by PS and NOVA1/2 are almost entirely nonoverlapping. This observation suggests that the regulatory codes of individual RNA binding proteins may be nearly immutable, yet the regulatory modules controlled by these proteins are highly evolvable.
    Genome Research 10/2010; 21(2):193-202. · 14.40 Impact Factor
  • Source
    Jung W Park, Brenton R Graveley
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference (RNAi) is becoming a popular method for analyzing gene function in a variety of biological processes. We have used RNAi in cultured Drosophila cells to identify trans-acting factors that regulate the alternative splicing of endogenously transcribed pre-mRNAs. We have generated a dsRNA library comprising approximately 70% of the Drosophila genes encoding RNA binding proteins and assessed the function of each protein in the regulation of alternative splicing. This approach not only identifies trans-acting factors regulating specific alternative splicing events, but also can provide insight into the alternative splicing regulatory networks of Drosophila. Here, we describe this RNAi approach to identify alternative splicing regulatory proteins in detail.
    Methods 01/2006; 37(4):341-4. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing is a powerful means of regulating gene expression and enhancing protein diversity. In fact, the majority of metazoan genes encode pre-mRNAs that are alternatively spliced to produce anywhere from two to tens of thousands of mRNA isoforms. Thus, an important part of determining the complete proteome of an organism is developing a catalog of all mRNA isoforms. Alternatively spliced exons are typically identified by aligning EST clusters to reference mRNAs or genomic DNA. However, this approach is not useful for genomes that lack robust EST coverage, and tools that enable accurate prediction of alternatively spliced exons would be extraordinarily useful. Here, we use comparative genomics to identify, and experimentally verify, potential alternative exons based solely on their high degree of conservation between Drosophila melanogaster and D. pseudoobscura. At least 40% of the exons that fit our prediction criteria are in fact alternatively spliced. Thus, comparative genomics can be used to accurately predict certain classes of alternative exons without relying on EST data.
    RNA 01/2005; 10(12):1838-44. · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing is thought to be regulated by nonspliceosomal RNA binding proteins that modulate the association of core components of the spliceosome with the pre-mRNA. Although the majority of metazoan genes encode pre-mRNAs that are alternatively spliced, remarkably few splicing regulators are currently known. Here, we used RNA interference to examine the role of >70% of the Drosophila RNA-binding proteins in regulating alternative splicing. We identified 47 proteins as splicing regulators, 26 of which have not previously been implicated in alternative splicing. Many of the regulators we identified are nonspliceosomal RNA-binding proteins. However, our screen unexpectedly revealed that altering the concentration of certain core components of the spliceosome specifically modulates alternative splicing. These results significantly expand the number of known splicing regulators and reveal an extraordinary richness in the mechanisms that regulate alternative splicing.
    Proceedings of the National Academy of Sciences 12/2004; 101(45):15974-9. · 9.81 Impact Factor