Ana Belén Espinosa

Hospital Universitario de Salamanca, Helmantica, Castille and León, Spain

Are you Ana Belén Espinosa?

Claim your profile

Publications (14)75.47 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite recent advances in the identification of the cytogenetic profiles of meningiomas, a significant group of tumors still show normal karyotypes or few chromosomal changes. The authors analyzed the cytogenetic profile of 50 meningiomas using fluorescence in situ hybridization and high-density (500 K) single nucleotide polymorphism (SNP) arrays. Our results confirm that del(22q) (52%) and del(1p) (16%) (common deleted regions: 22q11.21-22q13.3. and 1p31.2-p36.33) are the most frequent alterations. Additionally, recurrent monosomy 14 (8%), del(6q) (10%), del(7p) (10%), and del(19q) (4%) were observed, while copy number patterns consistent with recurrent chromosomal gains, gene amplification, and copy number neutral loss of heterozygosity (cnLOH) were either absent or rare. Based on their overall SNP profiles, meningiomas could be classified into: (i) diploid cases, (ii) meningiomas with a single chromosomal change [e.g., monosomy 22/del(22q)] and (iii) tumors with ≥2 altered chromosomes. In summary, our results confirm and extend on previous observations showing that the most recurrent chromosomal abnormalities in meningiomas correspond to chromosome losses localized in chromosomes 1, 22 and less frequently in chromosomes 6, 7, 14, and 19, while chromosomal gains and cnLOH are restricted to a small proportion of cases. Finally, a set of cancer-associated candidate genes associated with the TP53, MYC, CASP3, HDAC1, and TERT signaling pathways was identified, in cases with coexisting monosomy 14 and del(1p).
    Genes Chromosomes and Cancer 02/2012; 51(6):606-17. · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome 14 loss in meningiomas are associated with more aggressive tumour behaviour. To date, no studies have been reported in which the entire chromosome 14q of meningioma tumour cells has been studied by high-resolution array comparative genomic hybridization (a-CGH). Here, we used a high-resolution a-CGH to define the exact localization and extent of numerical changes of chromosome 14 in meningioma patients. An array containing 807 bacterial artificial chromosome clones specific for chromosome 14q (average resolution of approximately 130 Kb) was constructed and applied to the study of 25 meningiomas in parallel to the confirmatory interphase fluorescence in situ hybridization (iFISH) analyses. Overall, abnormalities of chromosome 14q were detected in 10/25 cases (40%). Interestingly, in seven of these cases, loss of chromosome 14q32.3 was detected by iFISH and confirmed to correspond to monosomy 14 by a-CGH. In contrast, discrepant results were found between iFISH and a-CGH in the other three altered cases. In one patient, a diploid background was observed by iFISH, while monosomy 14 was identified by a-CGH. In the remaining two cases, which showed gains of the IGH gene by iFISH, a-CGH did not detected copy number changes in one case showing a tetraploid karyotype, while in the other tumour, varying genetic imbalances along the long arm of chromosome 14 were detected. In summary, here, we report for the first time, the high-resolution a-CGH profiles of chromosome 14q in meningiomas, confirming that monosomy 14 is the most frequent alteration associated with this chromosome; other numerical abnormalities being only sporadically detected.
    European Journal of HumanGenetics 12/2008; 16(12):1450-8. · 4.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor recurrence is the major clinical complication in meningiomas, and its prediction in histologically benign/grade I tumors remains a challenge. In this study, we analyzed the prognostic value of specific chromosomal abnormalities and the genetic heterogeneity of the tumor, together with other clinicobiological disease features, for predicting early relapses in histologically benign/grade I meningiomas. A total of 149 consecutive histologically benign/grade I meningiomas in patients who underwent complete tumor resection were prospectively analyzed. Using interphase fluorescence in situ hybridization, we studied the prognostic impact of the abnormalities detected for 11 different chromosomes, together with other relevant clinicobiological and histopathological characteristics of the disease, on recurrence-free survival (RFS) at 2.5, 5, and 10 years. From the prognostic point of view, losses of chromosomes 9, 10, 14, and 18 and del(1p36) were associated with a shorter RFS at 2.5, 5, and 10 years. Similarly, histologically benign/grade I meningiomas showing coexistence of monosomy 14 and del(1p36) in the ancestral tumor cell clone displayed a higher frequency of early relapses. In fact, coexistence of -14 and del(1p36) in the ancestral tumor cell clone, together with tumor size, represented the best combination of independent prognostic factors for the identification of those patients with a high risk of an early relapse. Our results indicate that patients with large histologically benign/grade I meningiomas carrying monosomy 14 and del(1p36) in their ancestral tumor cell clone have a high probability of relapsing early after diagnostic surgery. These findings suggest the need for closer follow-up in this small group of patients.
    Neuro-Oncology 11/2007; 9(4):438-46. · 6.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The female predominance of meningiomas has been established, but how this is affected by hormones is still under discussion. We analyzed the characteristics of meningiomas from male (n = 53) and female (n = 111) patients by interphase fluorescence in situ hybridization (iFISH). In addition, in a subgroup of 45 (12 male and 33 female) patients, tumors were hybridized with the Affymetrix U133A chip. We show a higher frequency of larger tumors (p = .01) and intracranial meningiomas (p = .04) together with a higher relapse rate (p = .03) in male than in female patients. Male patients had a higher percentage of del(1p36) (p < .001), while loss of an X chromosome was restricted to tumors from female patients (p = .008). In turn, iFISH studies showed a higher frequency of chromosome losses, other than monosomy 22 alone, in meningiomas from male patients (p = .002), while female patients displayed a higher frequency of chromosome gains (p = .04) or monosomy 22 alone (p = .03) in the ancestral tumor clone. Interestingly, individual chromosomal abnormalities had a distinct impact on the recurrence-free survival rate of male versus female patients. In turn, gene expression showed that eight genes (RPS4Y1, DDX3Y, JARID1D, DDX3X, EIF1AY, XIST, USP9Y, and CYorf15B) had significantly different expression patterns (R(2) > 0.80; p < .05) in tumors from male and female patients. In summary, we show the existence of different patterns of chromosome abnormalities and gene-expression profiles associated with patient gender, which could help to explain the slightly different clinical behavior of these two patient groups.
    The Oncologist 10/2007; 12(10):1225-36. · 4.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has long been recognized that spinal meningiomas show particular clinical and histological features. Here, we compare the clinico-biological characteristics as well as the genetic abnormalities and patterns of gene expression of spinal and intracranial meningiomas. Fourteen spinal and 141 intracranial meningioma patients were analyzed at diagnosis. In all tumors, interphase fluorescence in situ hybridization (iFISH) studies were performed for the detection of quantitative abnormalities for 11 different chromosomes. Additionally, microarray analyses were performed on a subgroup of 18 histologically benign meningiomas (7 spinal and 11 intracranial). Upon comparison with intracranial tumors, spinal meningiomas showed a marked predominance of psammomatous and transitional tumors (p = 0.001), together with a higher proportion of cases displaying a single tumor cell clone by iFISH (p = 0.004). In 86% of the spinal versus 56% of the intracranial tumors (p = 0.01), the ancestral tumor cell clone detected showed either absence of any chromosomal abnormality or monosomy 22/22q- alone. Analysis of gene expression profiles showed differential expression between spinal and intracranial meningiomas for a total of 1555 genes, 35 of which allowed a clear distinction between both tumor types. Most of these 35 genes (n = 30) showed significantly higher expression among spinal tumors and corresponded to genes involved in signal transduction pathways, which did not show a significantly different expression according to tumor histopathology. In summary, we show the occurrence of unique patterns of genetic abnormalities and gene expression profiles in spinal as compared to intracranial meningiomas that provide new insights into the molecular pathways involved in the tumorigenesis and progression of spinal meningiomas, and could help explain their particular clinical and histological features.
    Journal of Neuropathology and Experimental Neurology 06/2006; 65(5):445-54. · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between different Abelson/breakpoint cluster region (BCR/ABL+) gene rearrangements and the involvement of different haematopoietic cell lineages were investigated in 15 chronic myeloid leukaemia patients. Analysis of purified cell populations confirmed the involvement of the neutrophil (89%), monocytic (89%), eosinophil (88%), erythroid (100%), and CD34(+) cells (100%) in virtually all patients, without differences between minor BCR/ABL+ and major BCR/ABL+ cases; BCR/ABL+ B- and natural killer (NK)-cells were detected in 43% and 31% of cases, respectively, whereas BCR/ABL+ T-cells were rare (7%). All three minor BCR/ABL+ patients showed involvement of both B- and NK-cells, which was infrequent (27%, P = 0.06 and 10%, P = 0.01) among major BCR/ABL+ cases.
    British Journal of Haematology 04/2006; 132(6):736-9. · 4.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recurrence is the major factor influencing the clinical outcome of meningioma patients although the exact relationship between primary and recurrent tumors still needs to be clarified. The aim of the present study is to analyze the cytogenetic relationship between primary and subsequent recurrent meningiomas developed within the same individual. Multicolor interphase fluorescence in situ hybridization was done for the identification of numerical abnormalities of 12 chromosomes in single-cell suspensions from 59 tumor samples corresponding to 25 recurrent meningioma patients. In 47 of these tumors, the distribution of different tumor cell clones was also analyzed in paraffin-embedded tissue sections. In parallel, 132 nonrecurrent cases were also studied. Most recurrent meningiomas showed complex cytogenetic aberrations associated with two or more tumor cell clones in the first tumor analyzed. Interestingly, in most individuals (74%), exactly the same tumor cell clones identified in the initial lesion were also detected in the subsequent recurrent tumor samples. In the recurrent tumor samples of the remaining cases (26%), we observed tumor cell clones related to those detected in the initial lesion but which had acquired one or more additional chromosome aberrations associated with either the emergence of new clones with more complex karyotypes or the disappearance of the most representative clones from the primary lesions. Multivariate analysis of prognostic factors showed that the Maillo et al. prognostic score, based on age of patient, tumor grade, and monosomy 14, together with tumor size was the best combination of independent variables for predicting tumor recurrence at diagnosis. Overall, our results indicate that the development of recurrent meningiomas after complete tumor resection is usually due to regrowth of the primary tumor and rarely to the emergence of an unrelated meningioma, underlining the need for alternative treatment strategies in cases at high risk of relapse, particularly those with a high Maillo et al. prognostic score and larger tumors.
    Clinical Cancer Research 03/2006; 12(3 Pt 1):772-80. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Philadelphia-positive (Ph(+)) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogeneous disease with a very poor prognosis. In this study, we analyzed the frequency of supernumerary Ph, trisomy 8, monosomy 7, and del(9p21) by FISH and its relationship with the characteristics of the disease, in 46 BCR/ABL(+) adult BCP-ALL patients. The frequency of supernumerary Ph, trisomy 8, monosomy 7 and del(9p21) was 30%, 20%, 15%, and 24%, respectively. Although all patients displayed a BII/common phenotype, supernumerary Ph and trisomy 8 were associated with higher expression of CD19 and CD22 and of CD19, CD34, CD45, and HLA-DR, respectively; in turn, cases with monosomy 7 showed lower CD19, CD22, CD34, and cCD79a and del(9p21)(+) blasts were CD13(-) and CD33(-). Overall, similar clinical and hematological features were observed at presentation, independently of the underlying genetic abnormalities. However, relapse-free survival (RFS) was significantly shorter in cases with supernumerary Ph, trisomy 8, and del(9p21), the latter being the most powerful independent prognostic factor for RFS.
    Leukemia 06/2005; 19(5):713-20. · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed quantitative chromosome 14 abnormalities in 124 meningiomas by interphase fluorescence in situ hybridization (iFISH) and confirmed the nature of abnormalities by comparative genomic hybridization (CGH). We correlated the abnormalities with clinical, histopathologic, and prognostic factors. Of 124 cases, 50 (40.3%) showed loss (14.5%) or gain (25.8%) of the 14q32 chromosome region by iFISH. Most corresponded to numeric abnormalities: monosomy (12.9%), trisomy (1.6%), or tetrasomy (24.2%); in only 2 cases (1.6%), chromosome 14 loss did not involve the whole chromosome and was restricted to the 14q31-q32 region (confirmed by CGH). Cases with gain or monosomy corresponded more frequently to histologically malignant tumors (P = .009). Patients with monosomy 14/14q-, but not those with gain, more often were male (P = .04) and had a greater incidence of recurrence (P = .003) and shorter relapse-free survival (P = .03). The 2 patients with loss limited to 14q31-q32 had histologically benign tumors and no relapse after more than 5 years' follow-up. Most meningiomas with chromosome 14 abnormalities have numeric changes, with interstitial deletions of 14q31-q32 present in few cases. Of the abnormalities detected, only monosomy 14 showed an adverse prognostic impact.
    American Journal of Clinical Pathology 06/2005; 123(5):744-51. · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meningiomas are cytogenetically heterogeneous tumors in which chromosome gains and losses frequently occur. Based on the intertumoral cytogenetic heterogeneity of meningiomas, hypothetical models of clonal evolution have been proposed in these tumors which have never been confirmed at the intratumoral cell level. The aim of this study was to establish the intratumoral patterns of clonal evolution associated with chromosomal instability in individual patients as a way to establish tumor progression pathways in meningiomas and their relationship with tumor histopathology and behavior. A total of 125 meningioma patients were analyzed at diagnosis. In all cases, multicolor interphase fluorescence in situ hybridization (iFISH) studies were performed on fresh tumor samples for the detection of quantitative abnormalities for 11 different chromosomes. In addition, overall tumor cell DNA content was measured in parallel by flow cytometry. iFISH studies were also performed in parallel on tissue sections in a subset of 30 patients. FISH studies showed that 56 (45%) of the 125 cases analyzed had a single tumor cell clone, all these cases corresponding to histologically benign grade I tumors. In the remaining cases (55%) more than one tumor cell clone was identified: two in 45 cases (36%), three in 19 (15%), and four or more clones in five cases (4%). Overall, flow cytometric analysis of cell DNA contents showed the presence of DNA aneuploidy in 44 of these cases (35%), 30% corresponding to DNA hyperdiploid and 5% to hypodiploid cases; from the DNA aneuploid cases, 35 (28%) showed two clones and 9 (7%) had three or more clones. A high degree of correlation (r >/= 0.89; P < 0.001) was found between FISH and flow cytometry as regards the overall quantitative DNA changes detected with both techniques, the former being more sensitive. Among the cases with chromosome abnormalities, the earliest tumor cell clone observed was frequently characterized by the loss of one or more chromosomes (64% of all meningiomas); loss of either a single chromosome 22 or, less frequently, of a sex chromosome (X or Y) and del (1p) was commonly found as the single initial cytogenetic aberration (30%, 5%, and 5% of the cases, respectively). Interestingly, an isolated loss of chromosome 22 was only found as the initial abnormality in one out of 14 atypical/anaplastic meningiomas, while the same cytogenetic pattern was present in the ancestral tumor cell clone of 32% of the benign tumors. Cytogenetic patterns based on chromosome gains were found in the ancestral tumor cell clone in 4% of the patients, 2% corresponding to tetraploid tumors. Overall, cytogenetic evolution of the earliest tumor cell clones was frequently associated with tetraploidization (31%). Our results show that meningiomas are genetically heterogeneous tumors that display different patterns of numerical chromosome changes, with the presence of more than one tumor cell clone detected in almost half of the cases including all atypical/anaplastic cases. Interestingly, the pathways of intratumoral clonal evolution observed in the benign tumors were different from those observed in atypical/anaplastic meningiomas, suggesting that the latter tumors might not always represent a more advanced stage of histologically benign meningiomas.
    Journal of Molecular Diagnostics 12/2004; 6(4):316-25. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared the incidence of Her-2/neu amplification in patients with and without a family history of breast cancer and correlated gene status with clinicobiologic and prognostic features in sporadic and familial cases. Of 108 patients, 28.7% had gene amplification. Among 96 cases with family history information available, 28 had an affected first-degree relative. The gene was amplified more frequently in familial than in sporadic cases (13/28 [46%] vs 14/68 [21%]; P = .01). Among familial cases, amplification was associated with adverse clinicobiologic features (poorly differentiated tumors [P = .05], larger tumors [P = .05], more lymph nodes involved [P = .04], and DNA aneuploid [P = .02] and highly proliferative tumors [P = .005]), and the relapse (P = .02) and disease-related death (P = .05) rates were higher than in cases without amplification. Among sporadic cases, amplification was not associated with significantly different disease features, except for a higher incidence of DNA aneuploid tumors (P = .01), percentage of S-phase tumor cells (P = .006), and lower proportion of estrogen (P = .001) and progesterone (P = .002) receptors. Her-2/neu amplification was observed more frequently among patients with a family history of breast cancer, in whom it was associated with adverse clinicobiologic features and a worse clinical outcome.
    American Journal of Clinical Pathology 01/2004; 120(6):917-27. · 2.88 Impact Factor
  • Journal of Molecular Diagnostics - J MOL DIAGN. 01/2004; 6(4):316-325.
  • Source
    Leukemia 11/2003; 18(1):162-164. · 10.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interphase fluorescence in situ hybridization (iFISH) is increasingly used for the identification of BCR/ABL gene rearrangements in chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL). In the present study, we have explored the incidence of both typical and atypical iFISH patterns of BCR/ABL gene rearrangements in a series of 168 consecutive BCR/ABL+ patients--135 CML, 31 precursor B-ALL and two acute myeloblastic leukemia (AML) cases--and established their underlying genetic alterations through further molecular and chromosome analyses. Two different FISH probes (Vysis Inc., Downers Grove, IL, USA) were used: the LSI BCR/ABL dual color extra signal (ES) and the dual color dual fusion BCR/ABL probe (D-FISH). Our results show that most BCR/ABL+ patients (83%, including 88% of all CML, 61% of ALL and one of two AML) displayed typical iFISH patterns of either Major (M) BCR/ABL (87% of CML, 13% of ALL and one of the two AML) or minor (m) BCR/ABL gene rearrangements (1% of all CML and 48% of ALL cases) with the two probes. Further molecular and cytogenetic studies confirmed the presence of such typical rearrangements in all except one of these ALL cases who had coexistence of an MBCR/ABL and an mBCR/ABL gene rearrangement together with monosomy 9. In the remaining 29 cases (17%), up to five different atypical iFISH patterns were detected with the ES probe. Atypical iFISH patterns were most frequently due to additional numerical changes--most often supernumerary Philadelphia (Ph) chromosome (7%) but also gain or loss of chromosome 9 (1%) or 22 (1%). Deletion of 9q sequences proximal to the breakpoint were also frequently observed with the ES probe (8%). Application of the D-FISH probe showed that in most of these latter cases (5%) deletion of 22q sequences distal to the breakpoint also occurred. The remaining cases with atypical iFISH had cryptic insertion of BCR in 9q34 (1%). Exact interpretation of each iFISH pattern was supported by FISH on metaphases and molecular determination of the BCR breakpoint. In summary, our results indicate that despite the high incidence of typical iFISH patterns of BCR/ABL gene rearrangements, atypical patterns are also found in BCR/ABL+ acute leukemias; the precise definition of the alteration present in individual cases is dependent on metaphase studies and molecular definition of the breakpoint.
    Leukemia 07/2003; 17(6):1124-9. · 10.16 Impact Factor