Samir E Witta

University of Colorado, Denver, CO, United States

Are you Samir E Witta?

Claim your profile

Publications (14)109.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone deacetylase inhibitors (HDACis) have been shown to overcome resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) linked to epigenetic changes and epithelial-mesenchymal transition (EMT) state. This randomized phase II study evaluated the outcome of erlotinib with and without the isoform selective HDACi, entinostat. Previously treated patients with stage IIIB/IV non-small-cell lung cancer, no prior EGFR-TKIs, and performance status ≤ 2 were randomly administered erlotinib 150 mg on days 1 through 28 plus entinostat 10 mg orally on days 1 and 15 every 28 days (EE) or erlotinib plus placebo (EP). The primary end point was 4-month progression-free survival (PFS) rate with additional end points including 6-month PFS rate, PFS, and overall survival (OS). Exploratory analyses included EMT- and EGFR-related biomarker analysis on archival tissue. One hundred thirty-two patients were enrolled (EE, 67; EP, 65). The 4-month PFS rate was comparable for both groups (EE, 18% v EP, 20%; P = .7). In the subset of patients with high E-cadherin levels, OS was longer in the EE group compared with the EP group (9.4 v 5.4 months; hazard ratio, 0.35; 95% CI, 0.13 to 0.92; P = .03) with a corresponding trend toward increased PFS. The adverse event (AE) profile was acceptable, with rash, fatigue, diarrhea, and nausea the most common AEs in both groups. Erlotinib combined with entinostat did not improve the outcomes of patients in the overall study population when compared with erlotinib monotherapy. High E-cadherin expression levels at time of diagnosis indicate an increased sensitivity to HDACi/EGFR-TKI inhibition providing the basis for a biomarker-driven validation study.
    Journal of Clinical Oncology 04/2012; 30(18):2248-55. · 18.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to characterize insulin-like growth factor-1 receptor (IGF1R) protein expression, mRNA expression, and gene copy number in surgically resected non-small-cell lung cancers (NSCLC) in relation to epidermal growth factor receptor (EGFR) protein expression, patient characteristics, and prognosis. One hundred eighty-nine patients with NSCLC who underwent curative pulmonary resection were studied (median follow-up, 5.3 years). IGF1R protein expression was evaluated by immunohistochemistry (IHC) with two anti-IGF1R antibodies (n = 179). EGFR protein expression was assessed with PharmDx kit. IGF1R gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) from 114 corresponding fresh-frozen samples. IGF1R gene copy number was assessed by fluorescent in situ hybridization using customized probes (n = 181). IGF1R IHC score was higher in squamous cell carcinomas versus other histologies (P < .001) and associated with stage (P = .03) but not survival (P = .46). IGF1R and EGFR protein expression showed significant correlation (r = 0.30; P < .001). IGF1R gene expression by qRT-PCR was higher in squamous cell versus other histologies (P = .006) and did not associate with other clinical features nor survival (P = .73). Employing criteria previously established for EGFR copy number, patients with IGF1R amplification/high polysomy (n = 48; 27%) had 3-year survival of 58%, patients with low polysomy (n = 87; 48%) had 3-year survival of 47% and patients with trisomy/disomy (n = 46; 25%) had 3-year survival of 35%, respectively (P = .024). Prognostic value of high IGF1R gene copy number was confirmed in multivariate analysis. IGF1R protein expression is higher in squamous cell versus other histologies and correlates with EGFR expression. IGF1R protein and gene expression does not associate with survival, whereas high IGF1R gene copy number harbors positive prognostic value.
    Journal of Clinical Oncology 03/2010; 28(13):2174-80. · 18.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR) inhibitors are effective in a subset of patients with non-small-cell lung cancer (NSCLC). We previously showed that E-cadherin expression associates with gefitinib activity. Here, we correlated the expressions of ErbB-3 and E-cadherin in NSCLC tumors and cell lines, their effect on response to gefitinib, and induction of both by the histone deacetylase (HDAC) inhibitors vorinostat and SNDX-275. Real-time RT-PCR was carried out on RNA isolated from 91 fresh-frozen NSCLC samples and from 21 NSCLC lines. Protein expression was evaluated with western blot and flow cytometry. Apoptosis was assessed using vibrant apoptosis assay. Expressions of E-cadherin and ErbB-3 correlated significantly in primary tumors (r = 0.38, P < 0.001) and in cell lines (r = 0.88, P < 0.001). Cotransfection of ErbB-3 and E-cadherin in a gefitinib-resistant cell line showed enhanced apoptotic response to gefitinib. vorinostat and SNDX-275 induced ErbB-3 and E-cadherin in gefitinib-resistant cell lines. When gefitinib-resistant lines were treated with vorinostat and gefitinib, synergistic effects were detected in four of the five lines tested. ErbB-3 and E-cadherin are coexpressed and induced by HDAC inhibitors. For tumors with low ErbB-3 and E-cadherin expressions, the combination of HDAC and EGFR-tyrosine kinase inhibitors increased expression of both genes and produced more than additive apoptotic effect.
    Annals of Oncology 01/2009; 20(4):689-95. · 7.38 Impact Factor
  • Journal of Thoracic Oncology - J THORAC ONCOL. 01/2007; 2.
  • [Show abstract] [Hide abstract]
    ABSTRACT: PI-88 is a mixture of highly sulfated oligosaccharides that inhibits heparanase, an extracellular matrix endoglycosidase, and the binding of angiogenic growth factors to heparan sulfate. This agent showed potent inhibition of placental blood vessel angiogenesis as well as growth inhibition in multiple xenograft models, thus forming the basis for this study. This study evaluated the toxicity and pharmacokinetics of PI-88 (80-315 mg) when administered s.c. daily for 4 consecutive days bimonthly (part 1) or weekly (part 2). Forty-two patients [median age, 53 years (range, 19-78 years); median performance status, 1] with a range of advanced solid tumors received a total of 232 courses. The maximum tolerated dose was 250 mg/d. Dose-limiting toxicity consisted of thrombocytopenia and pulmonary embolism. Other toxicity was generally mild and included prolongation of the activated partial thromboplastin time and injection site echymosis. The pharmacokinetics were linear with dose. Intrapatient variability was low and interpatient variability was moderate. Both AUC and C(max) correlated with the percent increase in activated partial thromboplastin time, showing that this pharmacodynamic end point can be used as a surrogate for drug exposure. No association between PI-88 administration and vascular endothelial growth factor or basic fibroblast growth factor levels was observed. One patient with melanoma had a partial response, which was maintained for >50 months, and 9 patients had stable disease for >or=6 months. The recommended dose of PI-88 administered for 4 consecutive days bimonthly or weekly is 250 mg/d. PI-88 was generally well tolerated. Evidence of efficacy in melanoma supports further evaluation of PI-88 in phase II trials.
    Clinical Cancer Research 10/2006; 12(18):5471-80. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine kinase inhibitors (TKI) of the epidermal growth factor receptor (EGFR) produce objective responses in a minority of patients with advanced-stage non-small cell lung cancer (NSCLC), and about half of all treated patients progress within 6 weeks of instituting therapy. Because the target of these agents is known, it should be possible to develop biological predictors of response, but EGFR protein levels have not been proven useful as a predictor of TKI response in patients and the mechanism of primary resistance is unclear. We used microarray gene expression profiling to uncover a pattern of gene expression associated with sensitivity to EGFR-TKIs by comparing NSCLC cell lines that were either highly sensitive or highly resistant to gefitinib. This sensitivity-associated expression profile was used to predict gefitinib sensitivity in a panel of NSCLC cell lines with known gene expression profiles but unknown gefitinib sensitivity. Gefitinib sensitivity was then determined for members of this test panel, and the microarray-based sensitivity prediction was correct in eight of nine NSCLC cell lines. Gene and protein expression differences were confirmed with a combination of quantitative reverse transcription-PCR, flow cytometry, and immunohistochemistry. This gene expression pattern related to gefitinib sensitivity was independent from sensitivity associated with EGFR mutations. Several genes associated with sensitivity encode proteins involved in HER pathway signaling or pathways that interrelate to the HER signaling pathway. Some of these genes could be targets of pharmacologic interventions to overcome primary resistance.
    Molecular Cancer Research 09/2006; 4(8):521-8. · 4.35 Impact Factor
  • Clinical Cancer Research 07/2006; 12(12):3652-6. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR) mRNA expression and EGFR gene dosage by quantitative PCR in tumor samples obtained from patients with gefitinib-treated non-small cell lung cancer were analyzed in order to determine the association with treatment outcome, clinical, and biological features [EGFR copy number by fluorescent in situ hybridization (FISH), EGFR tyrosine kinase mutations, and EGFR protein expression]. EGFR mRNA expression was measured by real-time quantitative reverse transcription-PCR in 64 patients, and EGFR gene dosage was analyzed by real-time quantitative PCR in 82 patients from paraffin-embedded specimens. EGFR mRNA expression was higher in responders to gefitinib as compared with nonresponders (P = 0.012). Patients with high EGFR mRNA expression (>5.01) had 43% response probability, whereas patients with low EGFR mRNA expression had 8% response probability (P = 0.006). Patients with high EGFR mRNA expression had longer median progression-free (5.3 versus 2.8 months, P = 0.028) but not overall survival (13.8 versus 10.9 months, P = 0.87). EGFR mRNA expression was higher in FISH-positive patients (P = 0.001) and in patients with positive EGFR immunostaining (P < 0.001) but not in patients with EGFR mutations (P = 0.19). EGFR gene dosage did not predict response (P = 0.54), progression-free (P = 0.73), or overall survival (P = 0.89). EGFR gene dosage was not associated with FISH positivity (P = 0.15), relative mRNA expression (P = 0.27), EGFR mutation status (P = 0.39), and EGFR protein expression (P = 0.35). EGFR mRNA expression is a predictive biomarker for response to gefitinib and to progression-free survival after gefitinib treatment. EGFR gene dosage is neither predictive for response nor progression-free nor overall survival.
    Clinical Cancer Research 05/2006; 12(10):3078-84. · 7.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epidermal growth factor receptor (EGFR) is overexpressed in the majority of non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib, produce 9% to 27% response rates in NSCLC patients. E-Cadherin, a calcium-dependent adhesion molecule, plays an important role in NSCLC prognosis and progression, and interacts with EGFR. The zinc finger transcriptional repressor, ZEB1, inhibits E-cadherin expression by recruiting histone deacetylases (HDAC). We identified a significant correlation between sensitivity to gefitinib and expression of E-cadherin, and ZEB1, suggesting their predictive value for responsiveness to EGFR-tyrosine kinase inhibitors. E-Cadherin transfection into a gefitinib-resistant line increased its sensitivity to gefitinib. Pretreating resistant cell lines with the HDAC inhibitor, MS-275, induced E-cadherin along with EGFR and led to a growth-inhibitory and apoptotic effect of gefitinib similar to that in gefitinib-sensitive NSCLC cell lines including those harboring EGFR mutations. Thus, combined HDAC inhibitor and gefitinib treatment represents a novel pharmacologic strategy for overcoming resistance to EGFR inhibitors in patients with lung cancer.
    Cancer Research 02/2006; 66(2):944-50. · 8.65 Impact Factor
  • Lung Cancer 07/2005; 49. · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gefitinib is a selective inhibitor of the epidermal growth factor (EGFR) tyrosine kinase, which is overexpressed in many cancers, including non-small-cell lung cancer (NSCLC). We carried out a clinical study to compare the relationship between EGFR gene copy number, EGFR protein expression, EGFR mutations, and Akt activation status as predictive markers for gefitinib therapy in advanced NSCLC. Tumors from 102 NSCLC patients treated daily with 250 mg of gefitinib were evaluated for EGFR status by fluorescence in situ hybridization (FISH), DNA sequencing, and immunohistochemistry and for Akt activation status (phospho-Akt [P-Akt]) by immunohistochemistry. Time to progression, overall survival, and 95% confidence intervals (CIs) were calculated and evaluated by the Kaplan-Meier method; groups were compared using the log-rank test. Risk factors associated with survival were evaluated using Cox proportional hazards regression modeling and multivariable analysis. All statistical tests were two-sided. Amplification or high polysomy of the EGFR gene (seen in 33 of 102 patients) and high protein expression (seen in 58 of 98 patients) were statistically significantly associated with better response (36% versus 3%, mean difference = 34%, 95% CI = 16.6 to 50.3; P<.001), disease control rate (67% versus 26%, mean difference = 40.6%, 95% CI = 21.5 to 59.7; P<.001), time to progression (9.0 versus 2.5 months, mean difference = 6.5 months, 95% CI = 2.8 to 10.3; P<.001), and survival (18.7 versus 7.0 months, mean difference = 11.7 months, 95% CI = 2.1 to 21.4; P = .03). EGFR mutations (seen in 15 of 89 patients) were also statistically significantly related to response and time to progression, but the association with survival was not statistically significant, and 40% of the patients with mutation had progressive disease. In multivariable analysis, only high EGFR gene copy number remained statistically significantly associated with better survival (hazard ratio = 0.44, 95% CI = 0.23 to 0.82). Independent of EGFR assessment method, EGFR+/P-Akt+ patients had a statistically significantly better outcome than EGFR-, P-Akt-, or EGFR+/P-Akt- patients. High EGFR gene copy number identified by FISH may be an effective molecular predictor for gefitinib efficacy in advanced NSCLC.
    CancerSpectrum Knowledge Environment 05/2005; 97(9):643-55. · 14.07 Impact Factor
  • Fred R Hirsch, Samir Witta
    [Show abstract] [Hide abstract]
    ABSTRACT: Epidermal growth factor receptor (EGFR) Inhibitors have shown promising results in patients with advanced non-small cell lung cancers (NSCLC) who previously have failed on chemotherapy. Objective response is achieved in 10 to 28% of the patients, and about 30% will achieve stable disease. A major problem is how to select the patients, who will benefit from treatment, and who will not. The predictive role of EGFR protein expression assessed by IHC is still debated. Specific EGFR gene mutations have been identified associated with response to gefitinib (Iressa(R)), but seem not to be associated with stable disease. No studies have yet demonstrated any association between EGFR gene mutations and survival. In this review we describe other marker studies, which are associated with sensitivity to EGFR inhibitors. Increased EGFR gene copy number based on FISH analysis is demonstrated to be a good predictive marker for response, stable disease, time to progression, and survival. EGFR/FISH seems today to be the best predictive marker for clinical benefit from EGFR inhibitors in NSCLC. Prospective large scale clinical studies must identify the most optimal paradigm for selection of patients.
    Current Opinion in Oncology 04/2005; 17(2):118-22. · 4.03 Impact Factor
  • Lung Cancer. 01/2005; 49.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exisulind (sulindac sulfone, FGN-1, Aptosyn) is a sulindac metabolite that induces apoptosis via inhibition of cyclic GMP-phosphodiesterase. This agent demonstrated tumor growth inhibition in rodent models of colon, breast, prostate, and lung carcinogenesis. In an orthotopic model of human non-small-cell lung cancer, the combination of exisulind and docetaxel prolonged survival in athymic nude rats, forming the basis of this phase I combination study. This study evaluated the toxicity and pharmacokinetics of combining exisulind (150-250 mg) given orally twice daily and docetaxel (30-36 mg/m2) administered intravenously on days 1, 8, and 15 of a 4-week cycle. Twenty patients with a range of advanced solid tumors (median age, 59 years; age range, 35-77 years; median performance status, 1) received a total of 70 courses. Observed adverse events were mild to moderate, and there was no dose-limiting toxicity at any level. Grade 3 gastrointestinal toxicities were present in 10 of the 70 cycles (10%) and included nausea, vomiting, dyspepsia, and elevated alkaline phosphatase. Neutropenia was present in four cycles in patients treated with a docetaxel dose of 36 mg/m2. Pharmacokinetic analysis did not demonstrate a clear effect of exisulind on docetaxel pharmacokinetics and vice versa. Relationships were evident between the plasma concentration of exisulind and the development of grade 2 or greater toxicities. One third of patients maintained stable disease for 3 to 12 cycles, but no objective responses were observed. The combination of docetaxel (36 mg/m2, weekly) and exisulind (500 mg/d) was reasonably well tolerated, and it is undergoing phase II testing in patients with non-small-cell lung cancer.
    Clinical Cancer Research 12/2004; 10(21):7229-37. · 7.84 Impact Factor