Yingrui Wang

Humboldt-Universität zu Berlin, Berlín, Berlin, Germany

Are you Yingrui Wang?

Claim your profile

Publications (7)32.78 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: cGMP serves as the main second messenger of nitric oxide (NO). Antifibrotic effects of enhancing renal cGMP levels have recently been documented in experimental acute anti-Thy-1 glomerulonephritis. The present study compares the effects of the cGMP production-increasing soluble guanylate cyclase (sGC) stimulator BAY 41-2272 with those of the cGMP degradation-limiting phosphodiesterase inhibitor pentoxifylline (PTX) in a progressive model of renal fibrosis. At 1 wk after induction of anti-Thy-1-induced chronic glomerulosclerosis (cGS), rats were randomly assigned to groups as follows: cGS, cGS + BAY 41-2272 (10 mg x kg body wt(-1) x day(-1)), or cGS + PTX (50 mg x kg body wt(-1) x day(-1)). BAY 41-2272 and PTX reduced systolic blood pressure significantly. At 16 wk, tubulointerstitial expressions of sGC mRNA and NO-induced cGMP synthesis were increased in untreated cGS animals, whereas their glomerular activity was depressed compared with normal controls. Tubulointerstitial and glomerular cGMP production in response to NO were significantly enhanced in animals treated with BAY 41-2272, but not in those treated with PTX. BAY 41-2272 administration resulted in marked reductions of glomerular and tubulointerstitial histological matrix accumulation, expression of TGF-beta1 and fibronectin, macrophage infiltration, and cell proliferation as well as improved renal function. In contrast, only moderate and nonsignificant renoprotective changes were observed in the cGS + PTX group. In conclusion, increasing renal cGMP production through BAY 41-2272 significantly improved renal NO-cGMP signaling and limited progression in anti-Thy-1-induced chronic renal fibrosis, whereas inhibition of cGMP degradation by PTX was only moderately effective. The findings indicate that pharmacological enhancement of renal cGMP levels by sGC stimulation represents a novel and effective antifibrotic approach in progressive kidney disorders.
    American journal of physiology. Renal physiology 02/2006; 290(1):F167-76. · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tubulointerstitial inflammation and fibrosis are hallmarks of chronic progressive renal diseases. To characterize the functional interaction between cell infiltration and matrix expansion, this study compared the immunosuppressant mycophenolate mofetil (MMF), intended as primarily anti-inflammatory intervention, the angiotensin-converting enzyme inhibitor enalapril, intended as primarily an anti-fibrotic drug, and a combination of both as anticipated anti-inflammatory/anti-fibrotic intervention. The model used was anti-thy1-induced chronic-progressive glomerulosclerosis (cGS) in the rat, where a brief anti-thy1-induced glomerular injury progresses spontaneously toward tubulointerstitial fibrosis and renal insufficiency. cGS was induced by injection of anti-thy1 antibody into uninephrectomized Wistar rats. One week after disease induction, animals were randomly assigned to the following groups: cGS, cGS plus MMF (20 mg.kg body wt(-1).day(-1)), cGS plus high-dose enalapril (12 mg.kg body wt(-1).day(-1)), and cGS plus both. At week 16 after disease induction, MMF or enalapril alone reduced signs of chronic renal disease significantly and similarly compared with the untreated cGS group. Variables measured included proteinuria, blood pressure, tubulointerstitial and glomerular matrix accumulation, expression of transforming growth factor-beta(1), fibronectin, and plasminogen activator inhibitor-1, infiltration of lymphocytes and macrophages, plasma creatinine and urea levels, and glomerular filtration rate. Combined MMF and enalapril treatment was not superior to single therapy. In conclusion, MMF slows the progression of chronic renal fibrosis and renal insufficiency as effectively as high-dose enalapril in the anti-thy1-induced chronic-progressive glomerulosclerosis model. The dual anti-inflammatory/anti-fibrotic intervention does not yield additive renoprotective effects, indicating that MMF and enalapril interfere with similar or very closely related pathways involved in progression of renal disease.
    American journal of physiology. Renal physiology 09/2005; 289(2):F359-68. · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A critical role of soluble guanylate cyclase and nitric oxide-dependent cyclic 3',5'-guanosine monophosphate (cGMP) production for glomerular matrix expansion has recently been documented in a rat model of acute anti-thy1 glomerulonephritis. The present study analyzes the renal activity of the nitric oxide-cGMP signaling cascade in and the effect of the specific soluble guanylate cyclase stimulator Bay 41-2272 on a progressive model of anti-thy1-induced chronic glomerulosclerosis. Anti-thy1 glomerulosclerosis was induced by injection of anti-thy1 antibody into uninephrectomized rats. One week after disease induction, animals were randomly assigned to chronic glomerulosclerosis, chronic glomerulosclerosis plus Bay 41-2272 (10 mg/kg body weight/day) or chronic glomerulosclerosis plus hydralazine (15 mg/kg body weight/day). In week 16, analysis included effects on systolic blood pressure, proteinuria, kidney function, glomerular and tubulointerstitial matrix protein accumulation, expression of transforming growth factor-beta1 (TGF-beta1), fibronectin and plasminogen activator inhibitor type 1 (PAI-1), macrophage infiltration, cell proliferation, basal and nitric oxide-stimulated cGMP production as well as tubulointerstitial mRNA expression of alpha 1 and beta 1 soluble guanylate cyclase. The moderately elevated systolic blood pressure seen in the chronic glomerulosclerosis group was comparably decreased by both treatments. Compared to normal controls, soluble guanylate cyclase mRNA expression and nitric oxide-stimulated cGMP production were up-regulated in the tubulointerstitium of the untreated chronic glomerulosclerosis animals, while its activity was decreased in glomeruli. Bay 41-2272 treatment enhanced glomerular and tubulointerstitial nitric oxide-cGMP signaling significantly. This went along with markedly reduced glomerular and tubulointerstitial macrophage infiltration, number of proliferating cells, matrix expression and accumulation, as well as improved kidney function. In contrast, hydralazine therapy did not significantly affect renal nitric oxide-cGMP signaling, macrophage number, cell proliferation, matrix protein expression and accumulation. Glomerular and tubulointerstitial soluble guanylate cyclase activity are discordantly altered in anti-thy1-induced chronic glomerulosclerosis. Stimulation of soluble guanylate cyclase signaling by Bay 41-2272 limits the progressive course of this model toward tubulointerstitial fibrosis and impaired renal function at least in part in a blood pressure-independent manner. The results suggest that soluble guanylate cyclase activation counteracts fibrosis and progression in chronic renal disease.
    Kidney International 08/2005; 68(1):47-61. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of soluble guanylate cyclase and generation of cyclic 3',5'-guanosine monophosphate (cGMP) is the main signal transducing event of the L-arginine-nitric oxide pathway. The present study analyzes the expression and activity of the nitric oxide-cGMP signaling cascade in and the effect of the specific soluble guanylate cyclase stimulator Bay 41-2272 on the early injury and subsequent repair phase of acute anti-thy1 glomerulonephritis. Anti-thy1 glomerulonephritis was induced by OX-7 antibody injection in rats. In protocol 1 (injury), Bay 41-2272 was given starting 6 days before antibody injection. One day after disease induction, parameters of mesangial cell injury (glomerular cell number and inducible nitric oxide synthesis) were analyzed. In protocol 2 (repair), Bay 41-2272 treatment was started one day after antibody injection. On day 7, parameters of glomerular repair [glomerular matrix score, expression of transforming growth factor (TGF)-beta1, fibronectin, and plasminogen-activator-inhibitor (PAI)-1, infiltration with macrophages and fibrinogen deposition (indicating platelet localization)] were determined. In both protocols, tail bleeding time, systolic blood pressure, plasma cGMP levels, glomerular mRNA expression of endothelial nitric oxide synthase (eNOS), alpha1 and beta1 soluble guanylate cyclase, and basal and nitric oxide-stimulated glomerular cGMP production were analyzed. Bay 41-2272 prolonged bleeding time, reduced blood pressure, and increased plasma cGMP levels in both protocols. In the injury experiment, disease induction increased inducible nitric oxide synthesis and reduced glomerular cell number, while expression and activity of soluble guanylate cyclase was almost completely diminished. Bay 41-2272 did not affect parameters of mesangial cell injury and glomerular soluble guanylate cyclase expression and activity. In the repair protocol, expression and activity of soluble guanylate cyclase was markedly increased by disease. Bay 41-2272 further enhanced soluble guanylate cyclase expression and activity. This went along with significant reductions in proteinuria, glomerular matrix accumulation, expression of TGF-beta1, fibronectin, and PAI-1, macrophage infiltration and fibrinogen deposition as compared to the untreated anti-thy1 animals. Glomerular nitric oxide signaling via cGMP is markedly impaired during injury of anti-thy1 glomerulonephritis, while it is highly up-regulated during subsequent repair. Further pharmacologic soluble guanylate cyclase stimulation limits glomerular TGF-beta overexpression and matrix expansion, suggesting that the soluble guanylate cyclase enzyme represents an important antifibrotic pathway in glomerular disease.
    Kidney International 01/2005; 66(6):2224-36. · 8.52 Impact Factor
  • Source
    BMC Pharmacology 01/2005;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Progression is a hallmark of chronic renal disease and histologically characterized by fibrosis and inflammation of the tubulointerstitial compartment. To define the role of lymphocytes in this process, the novel lymphocyte-specific inhibitor FTY720 was administered to rats with anti-thy 1-induced chronic progressive glomerulosclerosis. In this model, the initial and short-term inflammatory glomerular injury progresses self-perpetuatedly toward tubulointerstitial fibrosis by not primarily immune-mediated, intrarenal mechanisms. Chronic progressive glomerulosclerosis was induced by murine anti-thy 1 antibody injection into uninephrectomized rats. Treatment with FTY720 (0.3 mg/kg body weight) was started 7 days after disease induction. Proteinuria was measured every 4 weeks. In week 20, the following parameters were determined: blood lymphocyte number, kidney function, both glomerular and tubulointerstitial histologic matrix accumulation, protein expression of transforming growth factor-beta1 (TGF-beta1), fibronectin, and plasminogen activator inhibitor-1 (PAI-1) as well as infiltration with macrophages and lymphocytes. Treatment with FTY720 lowered blood lymphocyte count and renal lymphocyte infiltration highly significantly. In comparison to the untreated chronic progressive glomerulosclerosis animals, the lymphocyte depletion achieved significantly limited the progression of the disease, as shown by lowered proteinuria, tubulointerstitial matrix expansion, and TGF-beta1, fibronectin, and PAI-1 expression, as well as improved renal function. Glomerular matrix protein expression and accumulation was moderately lowered by FTY720. Glomerular macrophage infiltration was not, tubulointerstitial macrophage infiltration was moderately, but not significantly, decreased by FTY720 treatment. Lymphocyte depletion by FTY720 limits the progression of anti-thy 1-induced glomerulosclerosis toward chronic tubulointerstitial fibrosis and renal insufficiency. The data suggest that lymphocytes actively participate in the progression of chronic experimental kidney disease, and that FTY720 may be a novel approach to slow the progressive course of human chronic renal diseases.
    Kidney International 11/2004; 66(4):1434-43. · 8.52 Impact Factor
  • Source
    Yingrui Wang