O. Tajima

High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan

Are you O. Tajima?

Claim your profile

Publications (247)625.84 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present polarization measurements of extragalactic radio sources observed during the Cosmic Microwave Background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, $>$40 mJy catalog of the Australia Telescope (AT20G) survey. There are $\sim$480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30--40 mJy per Stokes parameter. At S/N $> 3$ significance, we detect linear polarization for seven sources in Q-band and six in W-band; only $1.3 \pm 1.1$ detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements $>1$ Jy, the polarization fraction are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10--20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models---ones that scale a fixed polarization fraction with frequency---are inadequate to model the behavior of these sources and their contributions to polarization maps.
    11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.
    European Physical Journal C 11/2014; · 5.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 hours, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.
    Review of Scientific Instruments 05/2014; 85(8). · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: GroundBIRD is a ground-based experiment designed to detect large angular scale odd-parity patterns in the cosmic microwave background (CMB) polarization (B -modes). We employ a high-speed rotation scan (20 rpm) instead of the usual left-right azimuthal scan; it allows a significant expansion of the scan range to 60^{circ } without any effect from the detector 1/f noise. We use microwave kinetic inductance detectors (MKIDs) arrays with a small telescope; our target multipole (ell ) range is 6 le ell le 300 . We plan to start the test observation in Japan in 2014; these will then be moved to the Atacama highland in Chile for scientific observations.
    Journal of Low Temperature Physics 01/2014; 176(5-6). · 1.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We developed a calibration system with a modulated polarization source for superconducting detectors at the 0.1-K stage in a dilution cooler. Our target application for this system is detector calibration for observations of the cosmic microwave background polarization. For this application, the calibration system is required to generate a well-characterized polarization signal in a wide frequency range; e.g., 20-300 GHz. The calibration system is attached at the bottom of the 0.1-K stage. Radio absorbers, which are attached to the inner wall of a cylindrical metal shield, emit unpolarized black-body radiation (4.5 K). The radiation reflects off an aluminum mirror at 120 K, which induces a linearly polarized component because of the finite emissivity of the mirror; the magnitude of the polarization is 60 mK in this configuration. The axis of polarization can be varied by rotation of the mirror. Therefore, the detectors measure the modulated polarization; however, unpolarized radiation into the detector is maintained constant. We succeeded in cooling the system properly. The sample stage for setting the detector achieved a temperature below 0.1 K under the 5 K load condition (some of the radiation from the absorbers and the mirror emission, 0.5 K). High-frequency components of emission from the mirror are shielded by using two thermal filters: polytetrafluoroethylene and nylon 66.
    Journal of Low Temperature Physics 12/2013; 176(5-6). · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.
    12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio $r$ to an uncertainty of $\delta r=0.001$. In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4~K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors (MKID). In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2~$\mu$K$\cdot$arcmin over the frequency range 50 to 320~GHz.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems.
    The Review of scientific instruments 11/2013; 84(11):114502. · 1.52 Impact Factor
  • Source
    S Oguri, J Choi, M Kawai, O Tajima
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (>99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition, cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 rpm. The developed system can be applied in various fields, e.g., in tests of Lorentz invariance, searches for axion, radio astronomy, and cosmology, and application of radar systems. In particular, there is a plan to use this system for a radio telescope observing cosmic microwave background radiation.
    The Review of scientific instruments 05/2013; 84(5):055116. · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the cosmic microwave background, targeting the imprint of inflationary gravitational waves at large angular scales(~1°). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters that form the focal planes use a compact design based on high electron mobility transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 μKs1/2) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 μKs1/2 at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range ℓ ~ 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance, and sources of systematic error of the instrument.
    The Astrophysical Journal 05/2013; 768(1):9. · 6.73 Impact Factor
  • PTEP. 03/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polarimeters used in cosmic microwave background (CMB) experiments must be well calibrated to measure faint CMB polarization patterns with low systematic errors. Polarimeter characteristics generally vary with the incident load temperature (Tload). Therefore, re-producing the observing conditions in the laboratory is an important concern. For polarimeters, we developed a characterization system with cryogenically cooled loads. The loads generate unpolarized radiation (15 K and 30 K), comparable to the typical sky temperature of the best sites on the ground, e.g., the Atacama Desert in Chile (Tload ˜ 15 K). The radiation from the loads is reflected by a metal mirror in the cryostat, yielding partially polarized radiation (600 mK), entering a feed horn on the polarimeter. Rotation of the mirror alters the incident angle of the polarization and causes periodic switching of the load temperature for Y -factor measurements. We demonstrated the validity of the system using a polarimeter developed for an upgrade of QUIET (QUIET-II), which can obtain the Stokes parameters I, Q, and U simultaneously. The system characterized all the necessary properties, e.g., the responses for I, Q, and U, and their crosstalk. In addition, a wide range of polarimeter bias conditions was surveyed. The principle of the characterization system is not limited to a particular frequency or detection scheme. Thus, various types of state-of-the-art detectors can be calibrated by using this system.
    Proc SPIE 09/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Odd-parity patterns in the cosmic microwave background (CMB) polarization, B-modes, could provide important cosmological information. Detection of the primordial B-mode power at a large angular scale would be a smoking gun signature of the inflationary universe. In particular, detecting a reionization bump (at a multipole of <= 10) should be a clear evidence of it. GroundBIRD is designed to detect the B-mode signal at this large angular scale from the ground. We will use superconducting detector arrays with small telescope that will also be cooled down to 4K. Therefore, the basic design can be extended to a satellite experiment. GroundBIRD employs a high-speed (20 rpm) rotation scan instead of the usual left-right azimuthal scan; this allows us to maintain a high-speed scan without any deceleration, resulting in a significant expansion of the scan range to 60° without any effect of the detector 1/f noise. Our target is measuring the CMB polarization power in a multipole (l) range of 6 <= l <= 300. We plan to start commissioning the instruments in Japan in early 2014; they will then be moved to the Atacama Desert in Chile for scientific observations.
    Proc SPIE 09/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor, which is from the stronger suppression to the tail of 1/f noise.
    Proc SPIE 09/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95GHz. The 43-GHz results have been published in QUIET Collaboration et al. (2011), and here we report the measurement of CMB polarization power spectra using the 95-GHz data. This data set comprises 5337 hours of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 uK sqrt(s). Four low-foreground fields were observed, covering a total of ~1000 square degrees with an effective angular resolution of 12.8', allowing for constraints on primordial gravitational waves and high-signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-Cl (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB and BB power spectra between l=25 and 975 and find that the EE spectrum is consistent with LCDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r=1.1+0.9-0.8 (r<2.8 at 95% C.L.) as derived by the ML pipeline, and r=1.2+0.9-0.8 (r<2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r=0.01, the lowest level yet reported in the literature.
    07/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature (10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.
    Journal of Low Temperature Physics 06/2012; 167(5-6). · 1.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two-point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.
    The Review of scientific instruments 05/2012; 83(5):056104. · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose an innovative demodulation scheme for coherent detectors used in cosmic microwave background polarization experiments. Removal of non-white noise, e.g., narrow-band noise, in detectors is one of the key requirements for the experiments. A combination of modulation and demodulation is used to extract polarization signals as well as to suppress such noise. Traditional demodulation, which is based on the two- point numerical differentiation, works as a first-order high pass filter for the noise. The proposed demodulation is based on the three-point numerical differentiation. It works as a second-order high pass filter. By using a real detector, we confirmed significant improvements of suppression power for the narrow-band noise. We also found improvement of the noise floor.
    03/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: B-modes are special patterns in cosmic microwave background (CMB) polarization. The detection of them is a smoking-gun signature of primordial gravitational waves. The generic strategy of the CMB polarization experiments is to employ a large number of polarimeters for improving the statistics. The Q/U Imaging ExperimenT-II (QUIET-II) has been proposed to detect the B-modes using the world's largest coherent polarimeter array (2,000 channels). An unique detection technique using QUIET's polarimeters, which is a modula- tion/demodulation scheme, enables us directly extracting the polarization signal. The extracted signal is free from non- polarized components and intrinsic 1/f noise. We developed a data readout system with on-board demodulation functions for the QUIET-II experiment. We employed a "master" clock strategy. This strategy guarantees phase matching between the modulation by the polarimeters and the demodulation by ADC modules. The single master generates all carrier clocks and distributes them to each module. The developed electronics, clock modules, and the ADC modules fulfill requirements. Tests with a setup similar to that of the real experiment proved that the system works properly. The performance of all system components are validated to be suitable for B-mode measurements.
    IEEE Transactions on Nuclear Science 12/2011; 59(3). · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering 1000 deg2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 μK. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35+1.06 –0.87. The combination of a new time-stream "double-demodulation" technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1.
    The Astrophysical Journal 10/2011; 741(2):111. · 6.73 Impact Factor

Publication Stats

759 Citations
625.84 Total Impact Points

Institutions

  • 1970–2014
    • High Energy Accelerator Research Organization
      • Institute of Particle and Nuclear Studies
      Tsukuba, Ibaraki, Japan
  • 2013
    • Korea University
      Sŏul, Seoul, South Korea
    • California Institute of Technology
      • Jet Propulsion Laboratory
      Pasadena, California, United States
  • 2011
    • University of Chicago
      • Department of Physics
      Chicago, IL, United States
  • 2006–2008
    • The University of Tokyo
      • Department of Physics
      Tokyo, Tokyo-to, Japan
    • Nagoya University
      • Graduate School of Science
      Nagoya-shi, Aichi-ken, Japan
    • Virginia Polytechnic Institute and State University
      Blacksburg, Virginia, United States
  • 2004–2008
    • National Taiwan University
      • Department of Physics
      Taipei, Taipei, Taiwan
    • Victoria University Melbourne
      Melbourne, Victoria, Australia
    • Institut für Hochenergiephysik Wien
      Wien, Vienna, Austria
    • Nara Women's University
      Nara, Nara, Japan
  • 2007
    • Institute of Nuclear Physics
      Cracovia, Lesser Poland Voivodeship, Poland
    • Fu Jen Catholic University
      • Department of Physics
      Taipei, Taipei, Taiwan
  • 2005–2007
    • Hefei University of Technology
      Luchow, Anhui Sheng, China
    • Jožef Stefan Institute
      Lubliano, Ljubljana, Slovenia
    • Princeton University
      • Department of Physics
      Princeton, NJ, United States
    • Tata Institute of Fundamental Research
      Mumbai, Mahārāshtra, India
    • Osaka University
      • Research Center for Nuclear Physics
      Ibaraki, Osaka-fu, Japan
    • Seoul National University
      Sŏul, Seoul, South Korea
    • Gyeongsang National University
      Shinshū, South Gyeongsang, South Korea
  • 2004–2007
    • Tokyo Institute of Technology
      • Department of Physics
      Edo, Tōkyō, Japan
  • 2005–2006
    • University of Cincinnati
      Cincinnati, Ohio, United States
    • Budker Institute of Nuclear Physics
      Novo-Nikolaevsk, Novosibirsk, Russia
  • 2004–2005
    • Institute for Theoretical and Experimental Physics
      Moskva, Moscow, Russia