Abel R Alcázar-Román

Vanderbilt University, Nashville, MI, United States

Are you Abel R Alcázar-Román?

Claim your profile

Publications (7)62.16 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear export of messenger RNA (mRNA) occurs by translocation of mRNA/protein complexes (mRNPs) through nuclear pore complexes (NPCs). The DEAD-box protein Dbp5 mediates export by triggering removal of mRNP proteins in a spatially controlled manner. This requires Dbp5 interaction with Nup159 in NPC cytoplasmic filaments and activation of Dbp5's ATPase activity by Gle1 bound to inositol hexakisphosphate (IP(6)). However, the precise sequence of events within this mechanism has not been fully defined. Here we analyze dbp5 mutants that alter ATP binding, ATP hydrolysis, or RNA binding. We found that ATP binding and hydrolysis are required for efficient Dbp5 association with NPCs. Interestingly, mutants defective for RNA binding are dominant-negative (DN) for mRNA export in yeast and human cells. We show that the DN phenotype stems from competition with wild-type Dbp5 for Gle1 at NPCs. The Dbp5-Gle1 interaction is limiting for export and, importantly, can be independent of Nup159. Fluorescence recovery after photobleaching experiments in yeast show a very dynamic association between Dbp5 and NPCs, averaging <1 sec, similar to reported NPC translocation rates for mRNPs. This work reveals critical steps in the Gle1-IP(6)/Dbp5/Nup159 cycle, and suggests that the number of remodeling events mediated by a single Dbp5 is limited.
    Genes & development 05/2011; 25(10):1052-64. · 12.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Essential messenger RNA (mRNA) export factors execute critical steps to mediate directional transport through nuclear pore complexes (NPCs). At cytoplasmic NPC filaments, the ATPase activity of DEAD-box protein Dbp5 is activated by inositol hexakisphosphate (IP(6))-bound Gle1 to mediate remodeling of mRNA-protein (mRNP) complexes. Whether a single Dbp5 executes multiple remodeling events and how Dbp5 is recycled are unknown. Evidence suggests that Dbp5 binding to Nup159 is required for controlling interactions with Gle1 and the mRNP. Using in vitro reconstitution assays, we found here that Nup159 is specifically required for ADP release from Dbp5. Moreover, Gle1-IP(6) stimulates ATP binding, thus priming Dbp5 for RNA loading. In vivo, a dbp5-R256D/R259D mutant with reduced ADP binding bypasses the need for Nup159 interaction. However, NPC spatial control is important, as a dbp5-R256D/R259D nup42Δ double mutant is temperature-sensitive for mRNA export. Further analysis reveals that remodeling requires a conformational shift to the Dbp5-ADP form. ADP release factors for DEAD-box proteins have not been reported previously and reflect a new paradigm for regulation. We propose a model wherein Nup159 and Gle1-IP(6) regulate Dbp5 cycles by controlling its nucleotide-bound state, allowing multiple cycles of mRNP remodeling by a single Dbp5 at the NPC.
    Genes & development 05/2011; 25(10):1065-77. · 12.08 Impact Factor
  • Abel R Alcázar-Román, Timothy A Bolger, Susan R Wente
    [Show abstract] [Hide abstract]
    ABSTRACT: The unidirectional translocation of messenger RNA (mRNA) through the aqueous channel of the nuclear pore complex (NPC) is mediated by interactions between soluble mRNA export factors and distinct binding sites on the NPC. At the cytoplasmic side of the NPC, the conserved mRNA export factors Gle1 and inositol hexakisphosphate (IP(6)) play an essential role in mRNA export by activating the ATPase activity of the DEAD-box protein Dbp5, promoting localized messenger ribonucleoprotein complex remodeling, and ensuring the directionality of the export process. In addition, Dbp5, Gle1, and IP(6) are also required for proper translation termination. However, the specificity of the IP(6)-Gle1 interaction in vivo is unknown. Here, we characterize the biochemical interaction between Gle1 and IP(6) and the relationship to Dbp5 binding and stimulation. We identify Gle1 residues required for IP(6) binding and show that these residues are needed for IP(6)-dependent Dbp5 stimulation in vitro. Furthermore, we demonstrate that Gle1 is the primary target of IP(6) for both mRNA export and translation termination in vivo. In Saccharomyces cerevisiae cells, the IP(6)-binding mutants recapitulate all of the mRNA export and translation termination defects found in mutants depleted of IP(6). We conclude that Gle1 specifically binds IP(6) and that this interaction is required for the full potentiation of Dbp5 ATPase activity during both mRNA export and translation termination.
    Journal of Biological Chemistry 04/2010; 285(22):16683-92. · 4.65 Impact Factor
  • Abel R Alcázar-Román, Susan R Wente
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly phosphorylated, soluble inositides are an emerging family of potential eukaryotic second messengers. The mechanisms for generating an outstanding diversity of mono- and pyrophosphorylated inositides have been recently elucidated and require a series of conserved lipases, kinases, and phosphatases. With several of the inositol kinases and the phospholipase C having access to the nucleus, roles for inositides in nuclear functions have been suggested. In support of this hypothesis, multiple studies have revealed the protein machines that are modulated by these inositides and found specific roles in nuclear physiology. In this paper, we review a novel paradigm for regulating gene expression at distinct steps by different inositide isomers. We discuss discoveries showing inositol polyphosphate regulation of gene expression at the level of transcription, chromatin remodeling, messenger ribonucleic acid (mRNA) editing, and mRNA export. Recent structural studies of inositol polyphosphate-binding proteins suggest the inositides modulate protein function as essential structural cofactors, triggers for allosteric or induced fit structural changes, and direct antagonistic competitors for other inositide ligands. We propose that the cell orchestrates the localized production of soluble inositol polyphosphates and inositol pyrophosphates to direct decisive and rapid signaling events. These insights also illustrate how extracellular stimuli might faithfully trigger the correct synchrony between gene expression steps and coordinate nuclear responses to changes in cellular environments.
    Chromosoma 03/2008; 117(1):1-13. · 3.34 Impact Factor
  • Source
    Abel R Alcázar-Román, Elizabeth J Tran, Shuangli Guo, Susan R Wente
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA-ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.
    Nature Cell Biology 08/2006; 8(7):711-6. · 20.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Translocation of messenger RNAs through the nuclear pore complex (NPC) requires coordinated physical interactions between stable NPC components, shuttling transport factors, and mRNA-binding proteins. In budding yeast (y) and human (h) cells, Gle1 is an essential mRNA export factor. Nucleocytoplasmic shuttling of hGle1 is required for mRNA export; however, the mechanism by which hGle1 associates with the NPC is unknown. We have previously shown that the interaction of hGle1 with the nucleoporin hNup155 is necessary but not sufficient for targeting hGle1 to NPCs. Here, we report that the unique C-terminal 43 amino acid region of the hGle1B isoform mediates binding to the C-terminal non-FG region of the nucleoporin hCG1/NPL1. Moreover, hNup155, hGle1B, and hCG1 formed a heterotrimeric complex in vitro. This suggested that these two nucleoporins were required for the NPC localization of hGle1. Using an siRNA-based approach, decreased levels of hCG1 resulted in hGle1 accumulation in cytoplasmic foci. This was coincident with inhibition of heat shock-induced production of Hsp70 protein and export of the Hsp70 mRNA in HeLa cells. Because this closely parallels the role of the hCG1 orthologue yNup42/Rip1, we speculate that hGle1-hCG1 function in the mRNA export mechanism is highly conserved.
    Molecular Biology of the Cell 10/2005; 16(9):4304-15. · 4.60 Impact Factor
  • Mythili Suntharalingam, Abel R Alcázar-Román, Susan R Wente
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear export of mRNA is mediated by interactions between soluble factors and nuclear pore complex (NPC) proteins. In Saccharomyces cerevisiae, Nab2 is an essential RNA-binding protein that shuttles between the nucleus and cytoplasm. The mechanism for trafficking of Nab2-bound mRNA through the NPC has not been defined. Gle1 is also required for mRNA export, and Gle1 interactions with NPC proteins, the RNA helicase Dbp5, and Gfd1 have been reported. Here we report that Nab2, Gfd1, and Gle1 associate in a complex. By using immobilized recombinant Gfd1, Nab2 was isolated from total yeast lysate. A similar biochemical assay with immobilized recombinant Nab2 resulted in coisolation of Gfd1 and Gle1. A Nab2-Gfd1 complex was also identified by coimmunoprecipitation from yeast lysates. In vitro binding assays with recombinant proteins revealed a direct association between Nab2 and Gfd1, and two-hybrid assays delineated Gfd1 binding to the N-terminal Nab2 domain. This N-terminal Nab2 domain is distinct from its RNA binding domains suggesting Nab2 could bind Gfd1 and RNA simultaneously. As Nab2 export was blocked in a gle1 mutant at the restrictive temperature, we propose a model wherein Gfd1 serves as a bridging factor between Gle1 and Nab2-bound mRNA during export.
    Journal of Biological Chemistry 09/2004; 279(34):35384-91. · 4.65 Impact Factor