John Duncan

Alpert Medical School - Brown University, Providence, Rhode Island, United States

Are you John Duncan?

Claim your profile

Publications (23)54.26 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targets in the CNS. In ageing and ageing-related dementias, the CP-CSF system is less able to regulate brain interstitial fluid. CP primarily generates CSF bulk flow, and so its malfunctioning exacerbates Alzheimers disease (AD). Considerable attention has been devoted to the blood-brain barrier in AD, but more insight is needed on regulatory systems at the human blood-CSF barrier in order to improve epithelial function in severe disease. Using autopsied CP specimens from AD patients, we immunocytochemically examined expression of heat shock proteins (HSP90 and GRP94), fibroblast growth factor receptors (FGFr) and a fluid-regulatory protein (NaK2Cl cotransporter isoform 1 or NKCC1). CP upregulated HSP90, FGFr and NKCC1, even in end-stage AD. These CP adjustments involve growth factors and neuropeptides that help to buffer perturbations in CNS water balance and metabolism. They shed light on CP-CSF system responses to ventriculomegaly and the altered intracranial pressure that occurs in AD and normal pressure hydrocephalus. The ability of injured CP to express key regulatory proteins even at Braak stage V/VI, points to plasticity and function that may be boosted by drug treatment to expedite CSF dynamics. The enhanced expression of human CP 'homeostatic proteins' in AD dementia is discussed in relation to brain deficits and pharmacology.
  • Source
    Cerebrospinal Fluid Research 01/2009; 6 Suppl 2:S40. · 1.81 Impact Factor
  • Source
    Cerebrospinal Fluid Research 01/2009; · 1.81 Impact Factor
  • Source
    Cerebrospinal Fluid Research 01/2009; · 1.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. OUTLINE: 1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion.
    Cerebrospinal Fluid Research 02/2008; 5:10. · 1.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 39-year-old man, who presented at age 312 with Landau-Kleffner syndrome, had persisting oral and written language deficits into adulthood. Seizures were easily controlled in childhood, but reemerged in adulthood as medication-refractory complex partial seizures. Abnormal T2 signal hyperintensity was seen in the left mesial temporal area on brain MRI. Later, left temporal lobectomy revealed focal cortical dysplasia in the lateral temporal neocortex and gliosis plus neuronal loss in the hippocampus. This case suggests that focal cortical microdysgenesis may be a cause of the Landau-Kleffner syndrome. Persistent seizures in this illustrative case may have led to the evolution of dual-temporal-lobe pathology with mesial temporal sclerosis.
    Epilepsy & Behavior 06/2007; 10(3):495-503. · 2.06 Impact Factor
  • Source
    Cerebrospinal Fluid Research 01/2007; · 1.81 Impact Factor
  • Source
    Cerebrospinal Fluid Research; 01/2007
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor for advanced glycation end products (RAGE) is thought to be a primary transporter of beta-amyloid across the blood-brain barrier (BBB) into the brain from the systemic circulation, while the low-density lipoprotein receptor-related protein (LRP)-1 mediates transport of beta-amyloid out of the brain. To determine whether there are Alzheimer's disease (AD)-related changes in these BBB-associated beta-amyloid receptors, we studied RAGE, LRP-1, and beta-amyloid in human elderly control and AD hippocampi. In control hippocampi, there was robust RAGE immunoreactivity in neurons, whereas microvascular staining was barely detectable. LRP-1 staining, in contrast, was clearly evident within microvessels but only weakly stained neurons. In AD cases, neuronal RAGE immunoreactivity was significantly decreased. An unexpected finding was the strongly positive microvascular RAGE immunoreactivity. No evidence for colocalization of RAGE and beta-amyloid was seen within either microvessels or senile plaques. A reversed pattern was evident for LRP-1 in AD. There was very strong staining for LRP-1 in neurons, with minimal microvascular staining. Unlike RAGE, colocalization of LRP-1 and beta-amyloid was clearly present within senile plaques but not microvessels. Western blot analysis revealed a much higher concentration of RAGE protein in AD hippocampi as compared with controls. Concentration of LRP-1 was increased in AD hippocampi, likely secondary to its colocalization with senile plaques. These data confirm that AD is associated with changes in the relative distribution of RAGE and LRP-1 receptors in human hippocampus. They also suggest that the proportion of amyloid within the brains of AD patients that is derived from the systemic circulation may be significant.
    Acta Neuropathologica 11/2006; 112(4):405-15. · 9.73 Impact Factor
  • H S Sharma, J A Duncan, C E Johanson
    [Show abstract] [Hide abstract]
    ABSTRACT: The present investigation was undertaken to find out whether whole-body hyperthermia (WBH) alters blood-cerebrospinal fluid barrier (BCSFB) permeability to exogenously-administered tracers and whether choroid plexus and ependymal cells exhibit morphological alterations in hyperthermia. Rats subjected to 4 hours of heat stress at 38 degrees C in a biological oxygen demand (BOD) incubator exhibited a profound increase in the BCSFB to Evans blue and radioiodine. Blue staining of the dorsal surface of the hippocampus and caudate nucleus and a significant increase in Evans blue and [131]Iodine in cisternal cerebrospinal fluid were seen following 4-hour heat stress compared to control. Degeneration of choroidal epithelial cells and underlying ependyma, a dilated ventricular space, and degenerative changes in the underlying neuropil were frequent. Hippocampus, caudate nucleus, thalamus, and hypothalamus exhibited profound increases in water content after 4 hours of heat stress. These observations suggest that hyperthermia induced by WBH is capable of breaking down the BCSFB and contributing to cell and tissue injury in the central nervous system.
    Acta neurochirurgica. Supplement 02/2006; 96:426-31.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence continues to build for the role of atrial natriuretic peptide (ANP) in reducing cerebrospinal fluid (CSF) formation rate, and thus, intracranial pressure. ANP binds to choroid plexus (CP) epithelial cells. This generates cGMP, which leads to altered ion transport and the slowing of CSF production. Binding sites for ANP in CP are plentiful and demonstrate plasticity in fluid imbalance disorders; however, specific ANP receptors in epithelial cells need confirmation. Using antibodies directed against NPR-A and NPR-B, we now demonstrate immunostaining not only in the choroidal epithelium (including cytoplasm), but also in the ependyma and some endothelial cells of cerebral microvessels in adult rats (Sprague-Dawley). The choroidal and ependymal cells stained almost universally, thus substantiating the initial autoradiographic binding studies with 125I-ANP. Because ANP titers in human CSF have previously been shown to increase proportionally to increments in ICP, we propose a compensatory ANP modulation of CP function to down-regulate ICP in hydrocephalus. Further evidence for this notion comes from the current finding of increased frequency of "dark" epithelial cells in CP of hydrocephalic (HTx) rats, which fits our earlier observation that the "dark" choroidal cells, associated with states of reduced CSF formation, are increased by elevated ANP in CSF. Altogether, ANP neuroendocrine-like regulation at CSF transport interfaces and blood-brain barrier impacts brain fluid homeostasis.
    Acta neurochirurgica. Supplement 02/2006; 96:451-6.
  • Source
    Cerebrospinal Fluid Research 01/2006; 3. · 1.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The choroid plexus (CP), i.e., the blood-cerebrospinal fluid barrier (BCSFB) interface, is an epithelial boundary exploitable for drug delivery to brain. Agents transported from blood to lateral ventricles are convected by CSF volume transmission (bulk flow) to many periventricular targets. These include the caudate, hippocampus, specialized circumventricular organs, hypothalamus, and the downstream pia-glia and arachnoid membranes. The CSF circulatory system normally provides micronutrients, neurotrophins, hormones, neuropeptides, and growth factors extensively to neuronal networks. Therefore, drugs directed to CSF can modulate a variety of endocrine, immunologic, and behavioral phenomema; and can help to restore brain interstitial and cellular homeostasis disrupted by disease and trauma. This review integrates information from animal models that demonstrates marked physiologic effects of substances introduced into the ventricular system. It also recapitulates how pharmacologic agents administered into the CSF system prevent disease or enhance the brain's ability to recover from chemical and physical insults. In regard to drug distribution in the CNS, the BCSFB interaction with the blood-brain barrier is discussed. With a view toward translational CSF pharmacotherapy, there are several promising innovations in progress: bone marrow cell infusions, CP encapsulation and transplants, neural stem cell augmentation, phage display of peptide ligands for CP epithelium, CSF gene transfer, regulation of leukocyte and cytokine trafficking at the BCSFB, and the purification of neurotoxic CSF in degenerative states. The progressively increasing pharmacological significance of the CP-CSF nexus is analyzed in light of treating AIDS, multiple sclerosis, stroke, hydrocephalus, and Alzheimer's disease.
    Pharmaceutical Research 08/2005; 22(7):1011-37. · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The function of the cerebrospinal fluid (CSF) and the tissue that secretes it, the choroid plexus (CP), has traditionally been thought of as both providing physical protection to the brain through buoyancy and facilitating the removal of brain metabolites through the bulk drainage of CSF. More recent studies suggest, however, that the CP-CSF system plays a much more active role in the development, homeostasis, and repair of the central nervous system (CNS). The highly specialized choroidal tissue synthesizes trophic and angiogenic factors, chemorepellents, and carrier proteins, and is strategically positioned within the ventricular cavities to supply the CNS with these biologically active substances. Through polarized transport systems and receptor-mediated transcytosis across the choroidal epithelium, the CP, a part of the blood-CSF barrier (BCSFB), controls the entry of nutrients, such as amino acids and nucleosides, and peptide hormones, such as leptin and prolactin, from the periphery into the brain. The CP also plays an important role in the clearance of toxins and drugs. During CNS development, CP-derived growth factors, such as members of the transforming growth factor-beta superfamily and retinoic acid, play an important role in controlling the patterning of neuronal differentiation in various brain regions. In the adult CNS, the CP appears to be critically involved in neuronal repair processes and the restoration of the brain microenvironment after traumatic and ischemic brain injury. Furthermore, recent studies suggest that the CP acts as a nursery for neuronal and astrocytic progenitor cells. The advancement of our knowledge of the neuroprotective capabilities of the CP may therefore facilitate the development of novel therapies for ischemic stroke and traumatic brain injury. In the later stages of life, the CP-CSF axis shows a decline in all aspects of its function, including CSF secretion and protein synthesis, which may in themselves increase the risk for development of late-life diseases, such as normal pressure hydrocephalus and Alzheimer's disease. The understanding of the mechanisms that underlie the dysfunction of the CP-CSF system in the elderly may help discover the treatments needed to reverse the negative effects of aging that lead to global CNS failure.
    Current Topics in Developmental Biology 02/2005; 71:1-52. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the secretory source of vitamins, peptides and hormones for neurons, the choroid plexus (CP) epithelium critically provides substances for brain homeostasis. This distributive process of cerebrospinal fluid (CSF) volume transmission reaches many cellular targets in the CNS. In ageing and ageing-related dementias, the CP-CSF system is less able to regulate brain interstitial fluid. CP primarily generates CSF bulk flow, and so its malfunctioning exacerbates Alzheimers disease (AD). Considerable attention has been devoted to the blood-brain barrier in AD, but more insight is needed on regulatory systems at the human blood-CSF barrier in order to improve epithelial function in severe disease. Using autopsied CP specimens from AD patients, we immunocytochemically examined expression of heat shock proteins (HSP90 and GRP94), fibroblast growth factor receptors (FGFr) and a fluid-regulatory protein (NaK2Cl cotransporter isoform 1 or NKCC1). CP upregulated HSP90, FGFr and NKCC1, even in end-stage AD. These CP adjustments involve growth factors and neuropeptides that help to buffer perturbations in CNS water balance and metabolism. They shed light on CP-CSF system responses to ventriculomegaly and the altered intracranial pressure that occurs in AD and normal pressure hydrocephalus. The ability of injured CP to express key regulatory proteins even at Braak stage V/VI, points to plasticity and function that may be boosted by drug treatment to expedite CSF dynamics. The enhanced expression of human CP 'homeostatic proteins' in AD dementia is discussed in relation to brain deficits and pharmacology.
    Cerebrospinal Fluid Research 01/2005; 1(1):3. · 1.81 Impact Factor
  • Source
    Cerebrospinal Fluid Research 01/2005; · 1.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental evidence obtained in various animal models of brain injury indicates that vasopressin promotes the formation of cerebral edema. However, the molecular and cellular mechanisms underlying this vasopressin action are not fully understood. In the present study, we analyzed the temporal changes in expression of vasopressin V1a receptors after traumatic brain injury (TBI) in rats. In the intact brain, the V1a receptor was expressed in neurons located in all layers of the frontoparietal cortex. The V1a receptor-immunoreactive product was predominantly localized to neuronal nuclei and had both a diffused and punctate staining pattern. The V1a receptors were also expressed in astrocytes, especially in layer 1 of the frontoparietal cortex. In these cells, two distinctive patterns of immunopositive staining for V1a receptors were observed: a diffused cytosolic staining of cell bodies and processes and a clearly punctate staining pattern that was predominantly localized to the astrocytic cell bodies. The real-time reverse-transcriptase polymerase chain reaction analysis of changes in mRNA for the V1a receptor demonstrated that after TBI, there is an early (4 h post-TBI) increase in the number of transcripts in the ipsilateral frontoparietal cortex, when compared to the contralateral hemisphere or the sham-injured rats. This increase in the message was followed by the up-regulation of expression of the V1a receptors at the protein level. This was most evident in cortical astrocytes in the areas surrounding the lesion. The number of the V1a receptor-immunopositive astrocytes in the traumatized parenchyma gradually increased, starting at 8 h and peaking at 4-6 days after TBI. Furthermore, a redistribution of V1a receptors from the astrocytic cell bodies to the astrocytic processes was observed. In addition to astrocytes, an increased expression of V1a receptors was found in the endothelium of both blood microvessels and the large-diameter blood vessels in the frontoparietal cortex ipsilateral to injury. This increase in the V1a receptor expression was apparent between 2 and 4 days after TBI. As early as 1-2 h following the impact, there was also a striking increase in the number of the V1a receptor-immunopositive beaded axonal processes, with greatly enlarged varicosities, that were localized to various areas of the injured parenchyma. It is suggested that the increased expression of V1a receptors plays an important role in the vasopressin-mediated formation of edema in the injured brain.
    Journal of Neurotrauma 09/2004; 21(8):1090-102. · 4.30 Impact Factor
  • European Journal of Pediatric Surgery 01/2004; 13 Suppl 1:S40-2. · 0.84 Impact Factor
  • Source
    Cerebrospinal Fluid Research 01/2004; · 1.81 Impact Factor
  • Source
    Cerebrospinal Fluid Research 01/2004; · 1.81 Impact Factor

Publication Stats

649 Citations
54.26 Total Impact Points

Institutions

  • 2006–2013
    • Alpert Medical School - Brown University
      • Department of Neurosurgery
      Providence, Rhode Island, United States
  • 2007
    • Brown University
      Providence, Rhode Island, United States
  • 2005
    • Rhode Island Hospital
      Providence, Rhode Island, United States