K. E. K. Coppin

University of Hertfordshire, Hatfield, England, United Kingdom

Are you K. E. K. Coppin?

Claim your profile

Publications (113)420.05 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyse HST WFC3/$H_{160}$-band observations of a sample of 48 ALMA-detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79$\pm$17% of the SMGs in the $H_{160}$-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the non-detections are SMGs with 870$\mu$m fluxes of $S_{870} < $3 mJy. With a surface brightness limit of $\mu_H \sim $26 mag arcsec$^{-2}$, we find that 82$\pm$9% of the $H_{160}$-band detected SMGs at $z =$ 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a S\'ersic fit to the $H_{160}$ surface-brightness profiles we derive a median S\'ersic index of $n = $1.2$\pm$0.3 and a median half-light radius of $r_e = $4.4$^{+1.1}_{-0.5}$ kpc for our SMGs at $z = $1-3. We also find significant displacements between the positions of the $H_{160}$-component and 870$\mu$m emission in these systems, suggesting that the dusty star-burst regions and less-obscured stellar distribution are not co-located. We find significant differences in the sizes and the S\'ersic index between our $z = $2-3 SMGs and $z \sim $2 quiescent galaxies, suggesting a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead $z\sim$2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the $z = $2-3 SMGs with $S_{870} \gtrsim $2 mJy are early/mid-stage major mergers.
    12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present high-resolution (0.3'') ALMA 870um imaging of 52 sub-millimeter galaxies (SMGs) in the Ultra Deep Survey (UDS) field and investigate the size and morphology of the sub-millimeter (sub-mm) emission on 2-10kpc scales. We derive a median intrinsic angular size of FWHM=0.30$\pm$0.04'' for the 23 SMGs in the sample detected at a signal-to-noise ratio (SNR) >10. Using the photometric redshifts of the SMGs we show that this corresponds to a median physical half-light diameter of 2.4$\pm$0.2kpc. A stacking analysis of the SMGs detected at an SNR <10 shows they have sizes consistent with the 870um-bright SMGs in the sample. We compare our results to the sizes of SMGs derived from other multi-wavelength studies, and show that the rest-frame ~250um sizes of SMGs are consistent with studies of resolved 12CO (J=3-2 to 7-6) emission lines, but that sizes derived from 1.4GHz imaging appear to be approximately two times larger on average, which we attribute to cosmic ray diffusion. The rest-frame optical sizes of SMGs are around four times larger than the sub-millimeter sizes, indicating that the star formation in these galaxies is compact relative to the pre-existing stellar distribution. The size of the starburst region in SMGs is consistent with the majority of the star formation occurring in a central region, a few kpc in extent, with a median star formation rate surface density of 90$\pm$30Msol/yr/kpc$^2$, which may suggest that we are witnessing an intense period of bulge growth in these galaxies.
    11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present statistically significant detections at 850um of the Lyman Break Galaxy (LBG) population at z=3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS) in the United Kingdom Infrared Deep Sky Survey Ultra Deep Survey (UKIDSS-UDS) field. We employ a stacking technique to probe beneath the survey limit to measure the average 850um flux density of LBGs at z=3, 4, and 5 with typical ultraviolet luminosities of L(1700A)~10^29 erg/s/Hz. We measure 850um flux densities of (0.25 +/- 0.03, (0.41 +/- 0.06), and (0.88 +/- 0.23) mJy respectively, and find that they contribute at most 20 per cent to the cosmic far-infrared background at 850um. Fitting an appropriate range of spectral energy distributions to the z=3, 4, and 5 LBG stacked 24-850um fluxes, we derive infrared (IR) luminosities of L(8-1000um)~3.2, 5.5, and 11.0x10^11 Lsun (corresponding to star formation rates of ~50-200 Msun/yr) respectively. We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous IR galaxy (LIRG) to ultraluminous IR galaxy (ULIRG) type systems at these epochs. We also see a strong positive correlation between stellar mass and IR luminosity. Our data are consistent with the main sequence of star formation showing little or no evolution from z=3 to 5. We have also confirmed that, for a fixed mass, the reddest LBGs (UV slope Beta -> 0) are indeed redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by approximately an order of magnitude over -2<Beta<0 such that SFR(IR)/SFR(UV)~20 for the reddest LBGs. Furthermore, the most massive LBGs also tend to have higher obscured-to-unobscured ratio, hinting at a variation in the obscuration properties across the mass range.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the detection of $^{12}$CO(2-1) in the $z = 4.44$ submillimetre galaxy ALESS65.1 using the Australia Telescope Compact Array. A previous ALMA study of submillimetre galaxies in the Extended Chandra Deep Field South determined the redshift of this optically and near-infrared undetected source through the measurement of [CII] 157.74 $\mu$m emission. Using the luminosity of the $^{12}$CO(2-1) emission we estimate the gas mass to be $M_{\rm gas} \sim 1.7 \times 10^{10}$ ${\rm M}_\odot$. The gas depletion timescale of ALESS65.1 is $\sim$ 25 Myr, similar to other high redshift submillimetre galaxies and consistent with $z > 4$ SMGs being the progenitors of massive "red-and-dead" galaxies at $z > 2$. The ratio of the [CII], $^{12}$CO and far-infrared luminosities implies a strong far-ultraviolet field of $G_0 \sim 10^{3.25}$, which is at the high end of the far-ultraviolet fields seen in local starbursts, but weaker than the far-ultraviolet fields of most nearby ULIRGs. The high ratio of $L_{\rm [CII]}/L_{\rm FIR} = 1.0 \times 10^{-3}$ observed in ALESS65.1, combined with $L_{\rm [CII]}/L_{\rm CO} \sim 2300$, is consistent with ALESS65.1 having more extended regions of intense star formation than local ULIRGs.
    Monthly Notices of the Royal Astronomical Society Letters 07/2014; 443(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present spatially resolved Atacama Large Millimeter/submillimeter Array (ALMA) [CII] observations of the z=4.7555 submillimetre galaxy, ALESS 73.1. Our 0.5" FWHM map resolves the [CII] emitting gas which is centred close to the active galactic nucleus (AGN). The gas kinematics are dominated by rotation but with high turbulence, v_rot/sigma_int~3.1, and a Toomre Q parameter <1 throughout the disk. By fitting three independent thin rotating disk models to our data, we derive a total dynamical mass of 3+-2x10^10 M_sol. This is close to the molecular gas mass derived from previous CO(2-1) observations, and implies a CO to H_2 conversion factor alpha_CO<2.3M_sol(K km/s/pc^2)^-1. The mass budget also constrains the stellar mass to <3.1x10^10 M_sol, and entails a gas fraction of f_gas>~0.4. The diameter of the dust continuum emission is <2 kpc, while the star-formation rate is as high as 1000 M_sol/yr. Combined with our stellar mass constraint, this implies an extreme specific star formation rate >80 Gyr^{-1}, especially since there are no clear indications of recent merger activity. Finally, our high signal-to-noise [CII] measurement revises the observed [NII]/[CII] ratio, which suggests a close to solar metallicity, unless the [CII] flux contains significant contributions from HII regions. Our observations suggest that ALESS73.1 is a nascent galaxy undergoing its first major burst of star formation, embedded within an unstable but metal-rich gas disk.
    04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection at 850um of the central source in SSA22-LAB1, the archetypal Lyman-alpha Blob (LAB), a 100kpc-scale radio-quiet emission-line nebula at z=3.1. The flux density of the source, $S_{850}=4.6\pm1.1$mJy implies the presence of a galaxy, or group of galaxies, with a total luminosity of $L_{\rm IR}\approx10^{12}L_\odot$. The position of an active source at the center of a ~50kpc-radius ring of linearly polarized Ly-alpha emission detected by Hayes et al. (2011) suggests that the central source is leaking Ly-alpha photons preferentially in the plane of the sky, which undergo scattering in HI clouds at large galactocentric radius. The Ly-alpha morphology around the submillimeter detection is reminiscent of biconical outflow, and the average Ly-alpha line profiles of the two `lobes' are dominated by a red peak, expected for a resonant line emerging from a medium with a bulk velocity gradient that is outflowing relative to the line center. Taken together, these observations provide compelling evidence that the central active galaxy (or galaxies) is responsible for a large fraction of the extended Ly-alpha emission and morphology. Less clear is the history of the cold gas in the circumgalactic medium being traced by Ly-alpha: is it mainly pristine material accreting into the halo that has not yet been processed through an interstellar medium (ISM), now being blown back as it encounters an outflow, or does it mainly comprise gas that has been swept-up within the ISM and expelled from the galaxy?
    The Astrophysical Journal 02/2014; 793(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the sub-mm properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-mm wavelengths. We base our study on 344 GHz ALMA continuum observations of ~20''-wide fields centered on 86 sub-mm sources detected in the LABOCA Extended Chandra Deep Field South Sub-mm Survey (LESS). We select various classes of distant galaxies (K-selected, star-forming sBzK galaxies, extremely red objects and distant red galaxies) according to their optical and NIR fluxes. We find clear, >10-sigma detections in the stacked images of all galaxy classes considered in our study. We include in our stacking analysis Herschel/SPIRE data to constrain the dust SED of these galaxies. We find that their dust emission is well described by a modified black body with Tdust~30 K and beta=1.6 and IR luminosities of (5-11) x 10^{11} Lsun, or implied star formation rates between 75 and 140 Msun/yr. We compare our results with those of previous studies of these galaxy populations based on single-dish observations at 870 micron and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also when we remove sources individually detected in ALESS maps (<35% of the galaxies in all the samples). We report a similar discrepancy by repeating our analysis on 1.4 GHz interferometric observations of the whole ECDFS. Hence we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of z.
    The Astrophysical Journal 11/2013; 780(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We exploit ALMA 870um (345GHz) observations of submillimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift submillimetre galaxies (SMGs). Using the precisely located 870um ALMA positions of 99 SMGs, together with 24um and radio imaging of this field, we deblend the Herschel/SPIRE imaging of this region to extract their far-infrared fluxes and colours. The median photometric redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their SEDs, with z=2.3+/-0.2, 2.5+/-0.3 and 3.5+/-0.5 for the 250, 350 and 500-um peakers respectively. We find that 34 ALESS SMGs do not have a >3-sigma counterpart at 250, 350 or 500-um. These galaxies have a median photometric redshift of z=3.3+/-0.5, which is higher than the full ALESS SMG sample; z=2.5+/-0.2. Using the photometric redshifts together with the 250-870um photometry, we estimate the far-infrared luminosities and characteristic dust temperature of each SMG. The median infrared luminosity of the S_870um>2mJy SMGs is L_IR=(3.0+/-0.3)x10^{12}Lo(SFR=300+/-30Mo/yr). At a fixed luminosity, the characteristic dust temperature of these high-redshift SMGs is 2-3K lower than comparably luminous galaxies at z=0, reflecting the more extended star formation occurring in these systems. By extrapolating the 870um number counts to S_ 870um=1mJy, we show that the contribution of S_870um>1mJy SMGs to the cosmic star formation budget is 20% of the total over the redshift range z~1-4. We derive a median dust mass for these SMGs of M_d=(3.6+/-0.3)x10^8Mo and by adopting an appropriate gas-to-dust ratio, we estimate an average molecular mass of M_H2=(4.2+/-0.4)x10^{10}Mo. Finally, we use our estimates of the H2 masses to show that SMGs with S_870um>1mJy contain ~10% of the z~2 volume-averaged H2 mass density at this epoch.
    Monthly Notices of the Royal Astronomical Society 10/2013; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first photometric redshift distribution for a large unbiased sample of 870um selected submillimeter galaxies (SMGs) with robust identifications based on observations with the Atacama Large Millimeter Array (ALMA). In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band, optical-near-infrared, photometry. We model the Spectral Energy Distributions (SEDs) for these 77 SMGs, deriving a median photometric redshift of z=2.3+/-0.1. The remaining 19 SMGs have insufficient optical or near-infrared photometry to derive photometric redshifts, but a stacking analysis of IRAC and Herschel observations confirms they are not spurious. Assuming these sources have an absolute H-band magnitude distribution comparable to that of a complete sample of z~1-2 SMGs, we demonstrate that the undetected SMGs lie at higher redshifts, raising the median redshift for SMGs to z=2.5+/-0.2. More critically we show that the proportion of galaxies undergoing an SMG phase at z>3 is 35+/-5% of the total population. We derive a median stellar mass for SMGs of Mstar=(8+/-1)x10^10Mo, but caution that there are significant systematic uncertainties in our stellar mass estimate, up to x5 for individual sources. We compare our sample of SMGs to a volume-limited, morphologically classified sample of ellipticals in the local Universe. Assuming the star formation activity in SMGs has a timescale of ~100Myr we show that their descendants at z~0 would have a space density and M_H distribution which are in good agreement with those of local ellipticals. In addition the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.
    The Astrophysical Journal 10/2013; 788(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The large gas and dust reservoirs of submm galaxies (SMGs) could potentially provide ample fuel to trigger an Active Galactic Nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with ALMA and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submm-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey (ALESS). We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which 8 were identified as AGNs using several techniques that enable cross-checking. The other 2 X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by their star-formation activity. 6 of the 8 SMG-AGNs are moderately/highly absorbed, with N_H > 10e23 cm-2. An analysis of the AGN fraction, taking into account the spatial variation of X-ray sensitivity, yields an AGN fraction of 17+16-6% for AGNs with rest-frame 0.5-8 keV absorption-corrected luminosity >7.8x10e42 erg s-1; we provide estimated AGN fractions as a function of X-ray flux and luminosity. ALMA's high angular resolution also enables direct X-ray stacking at the precise positions of SMGs for the first time, and we found 4 potential SMG-AGNs in our stacking sample.
    The Astrophysical Journal 10/2013; 778(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 1014-15M ☉. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 1011M ☉, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z)5.1 ± 1.9 over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M cluster). The evolution is similar, with ΣSFR/M cluster ~ (1 + z)5.4 ± 1.9. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ~5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ~ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ~ 0.75 have the same or less star formation per unit mass or galaxy as the field.
    The Astronomical Journal 09/2013; 146(4):84. · 4.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the multi-wavelength properties of a sample of 450-\mu m selected sources from the SCUBA-2 Cosmology Legacy Survey (S2CLS). A total of 69 sources were identified above 4\sigma\ in deep SCUBA-2 450-\mu m observations overlapping the UDS and COSMOS fields and covering 210 sq. arcmin to a typical depth of \sigma 450=1.5 mJy. Reliable cross identification are found for 58 sources (84 per cent) in Spitzer and Hubble Space Telescope WFC3/IR data. The photometric redshift distribution (dN/dz) of 450\mu m-selected sources is presented, showing a broad peak in the redshift range 1<z<3, and a median of z=1.4. Combining the SCUBA-2 photometry with Herschel SPIRE data from HerMES, the submm spectral energy distribution (SED) is examined via the use of modified blackbody fits, yielding aggregate values for the IR luminosity, dust temperature and emissivity of =10^12 +/- 0.8 L_sol, =42 +/- 11 K and <\beta_D>=1.6 +/- 0.5, respectively. The relationship between these SED parameters and the physical properties of galaxies is investigated, revealing correlations between T_D and LIR and between \beta_D and both stellar mass and effective radius. The connection between star formation rate and stellar mass is explored, with 24 per cent of 450 \mu m sources found to be ``star-bursts'', i.e. displaying anomalously high specific SFRs. However, both the number density and observed properties of these ``star-burst'' galaxies are found consistent with the population of normal star-forming galaxies.
    Monthly Notices of the Royal Astronomical Society 08/2013; 436(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a wide-field (30' diameter) 850um SCUBA-2 map of the spectacular three-component merging supercluster, RCS 231953+00, at z=0.9. The brightest submillimetre galaxy (SMG) in the field (S_850=12mJy) is within 30" of one of the cluster cores (RCS 2319-C), and is likely to be a more distant, lensed galaxy. Interestingly, the wider field around RCS 2319-C reveals a local overdensity of SMGs, exceeding the average source density by a factor of 4.5, with a <1 per cent chance of being found in a random field. Utilizing Herschel-SPIRE observations, we find three of these SMGs have similar submillimetre colours. We fit their observed 250-850um spectral energy distributions to estimate their redshift, yielding 2.5<z<3.5, and calculate prodigious star formation rates (SFRs) ranging from 500-2500 solar masses per year. We speculate that these galaxies are either lensed SMGs, or signpost a physical structure at z~3: a 'protocluster' inhabited by young galaxies in a rapid phase of growth, destined to form the core of a massive galaxy cluster by z=0.
    Monthly Notices of the Royal Astronomical Society 08/2013; 436(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS). Our 870 micron survey with ALMA (ALESS) has produced maps ~3X deeper and with a beam area ~200X smaller than the original LESS observations, doubling the current number of interferometrically-observed submillimeter sources. The high resolution of these maps allows us to resolve sources that were previously blended and accurately identify the origin of the submillimeter emission. We discuss the creation of the ALESS submillimeter galaxy (SMG) catalog, including the main sample of 99 SMGs and a supplementary sample of 32 SMGs. We find that at least 35% (possibly up to 50%) of the detected LABOCA sources have been resolved into multiple SMGs, and that the average number of SMGs per LESS source increases with LESS flux density. Using the (now precisely known) SMG positions, we empirically test the theoretical expectation for the uncertainty in the single-dish source positions. We also compare our catalog to the previously predicted radio/mid-infrared counterparts, finding that 45% of the ALESS SMGs were missed by this method. Our ~1.6" resolution allows us to measure a size of ~9 kpc X 5 kpc for the rest-frame ~300 um emission region in one resolved SMG, implying a star formation rate surface density of 80 M_sol yr^-1 kpc^-2, and we constrain the emission regions in the remaining SMGs to be <10 kpc. As the first statistically reliable survey of SMGs, this will provide the basis for an unbiased multiwavelength study of SMG properties.
    The Astrophysical Journal 04/2013; 768(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present CO(2-1) observations of the submillimetre galaxy ALESS65.1 performed with the Australia Telescope Compact Array at 42.3 GHz. A previous ALMA study of submillimetre galaxies in the Extended Chandra Deep Field South detected [CII] 157.74 micron emission from this galaxy at a redshift of z = 4.44. No CO(2-1) emission was detected but we derive a firm upper limit to the cold gas mass in ALESS65.1 of M_gas < 1.7 x 10^10 M_odot. The estimated gas depletion timescale is <50 Myr, which is similar to other high redshift SMGs, and consistent with z > 4 SMGs being the likely progenitors of massive red-and-dead galaxies at z > 2. The ratio of the [CII], CO and far-infrared luminosities implies a strong far-ultraviolet field of G_0 > 10^3, as seen in Galactic star forming regions or local ULIRGs. The observed L_[CII]/L_FIR = 2.3 x 10^{-3} is high compared to local ULIRGs and, combined with L_[CII]/L_CO > 2700, it is consistent with ALESS65.1 either having an extended (several kpc) [CII] emitting region or lower than solar metallicity.
    Monthly Notices of the Royal Astronomical Society 02/2013; 431(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first deep blank-field 450um map (1-sigma~1.3mJy) from the SCUBA-2 Cosmology Legacy Survey (S2CLS), conducted with the James Clerk Maxwell Telescope (JCMT) is presented. Our map covers 140 arcmin^2 of the COSMOS field, in the footprint of the HST CANDELS area. Using 60 submillimetre galaxies (SMGs) detected at >3.75-sigma, we evaluate the number counts of 450um-selected galaxies with flux densities S_450>5mJy. The 8-arcsec JCMT beam and high sensitivity of SCUBA-2 now make it possible to directly resolve a larger fraction of the cosmic infrared background (CIB, peaking at ~200um) into the individual galaxies responsible for its emission than has previously been possible at this wavelength. At S_450>5mJy we resolve (7.4[+/-]0.7)x10^-2 MJy/sr of the CIB at 450um (equivalent to 16[+/-]7% of the absolute brightness measured by COBE at this wavelength) into point sources. A further ~40% of the CIB can be recovered through a statistical stack of 24um emitters in this field, indicating that the majority (~60%) of the CIB at 450um is emitted by galaxies with S_450>2mJy. The average redshift of 450um emitters identified with an optical/near-infrared counterpart is estimated to be =1.3, implying that the galaxies in the sample are in the ultraluminous class (L_IR~1.1x10^12 L_sun). If the galaxies contributing to the statistical stack lie at similar redshifts, then the majority of the CIB at 450um is emitted by galaxies in the LIRG class with L_IR>3.6x10^11 L_sun.
    Monthly Notices of the Royal Astronomical Society 11/2012; 432(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a search for molecular gas emission from a star-forming galaxy at z = 4.9. The galaxy benefits from magnification of 22 +/- 5x due to strong gravitational lensing by the foreground cluster MS1358+62. We target the CO(5-4) emission at a known position and redshift from existing Hubble Space Telescope/ACS imaging and Gemini/NIFS [OII]3727 imaging spectroscopy, and obtain a tentative detection at the 4.3sigma level with a flux of 0.104 +/- 0.024Jkm/s. From the CO line luminosity and assuming a CO-to-H2 conversion factor alpha=2, we derive a gas mass M_gas ~ 1^{+1}_{-0.6} x 10^9 M_sun. Combined with the existing data, we derive a gas fraction Mgas/(Mgas + M*) = 0.59^{+0.11}_{-0.06}. The faint line flux of this galaxy highlights the difficulty of observing molecular gas in representative galaxies at this epoch, and suggests that routine detections of similar galaxies in the absence of gravitational lensing will remain challenging even with ALMA in full science operations.
    The Astrophysical Journal Letters 10/2012; 758(2). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the first counts of faint submillimetre galaxies (SMG) in the 870-um band derived from arcsecond resolution observations with the Atacama Large Millimeter Array (ALMA). We have used ALMA to map a sample of 122 870-um-selected submillimetre sources drawn from the (0.5x0.5)deg^2 LABOCA Extended Chandra Deep Field South Submillimetre Survey (LESS). These ALMA maps have an average depth of sigma(870um)~0.4mJy, some ~3x deeper than the original LABOCA survey and critically the angular resolution is more than an order of magnitude higher, FWHM of ~1.5" compared to ~19" for the LABOCA discovery map. This combination of sensitivity and resolution allows us to precisely pin-point the SMGs contributing to the submillimetre sources from the LABOCA map, free from the effects of confusion. We show that our ALMA-derived SMG counts broadly agree with the submillimetre source counts from previous, lower-resolution single-dish surveys, demonstrating that the bulk of the submillimetre sources are not caused by blending of unresolved SMGs. The difficulty which well-constrained theoretical models have in reproducing the high-surface densities of SMGs, thus remains. However, our observations do show that all of the very brightest sources in the LESS sample, S(870um)>12mJy, comprise emission from multiple, fainter SMGs, each with 870-um fluxes of <9mJy. This implies a natural limit to the star-formation rate in SMGs of <10^3 M_Sun/yr, which in turn suggests that the space densities of z>1 galaxies with gas masses in excess of ~5x10^10 M_Sun is <10^-5 Mpc^-3. We also discuss the influence of this blending on the identification and characterisation of the SMG counterparts to these bright submillimetre sources and suggest that it may be responsible for previous claims that they lie at higher redshifts than fainter SMGs.
    Monthly Notices of the Royal Astronomical Society 09/2012; 432(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present ALMA 870-um (345GHz) observations of two sub-millimetre galaxies (SMGs) drawn from an ALMA study of the 126 sub-millimeter sources from the LABOCA Extended Chandra Deep Field South Survey (LESS). The ALMA data identify the counterparts to these previously unidentified sub-millimeter sources and serendipitously detect bright emission lines in their spectra which we show are most likely to be [C II]157.74um emission yielding redshifts of z=4.42 and z=4.44. This blind detection rate within the 7.5-GHz bandpass of ALMA is consistent with the previously derived photometric redshift distribution of SMGs and suggests a modest, but not dominant (<25%), tail of 870-um selected SMGs at z>4. We find that the ratio of L_CII/L_FIR in these SMGs is much higher than seen for similarly far-infrared-luminous galaxies at z~0, which is attributed to the more extended gas reservoirs in these high-redshift ULIRGs. Indeed, in one system we show that the [C II] emission shows hints of extended emission on >3kpc scales. Finally, we use the volume probed by our ALMA survey to show that the bright end of the [C II] luminosity function evolves strongly between z=0 and z~4.4, reflecting the increased ISM cooling in galaxies as a result of their higher star-formation rates. These observations demonstrate that even with short integrations, ALMA is able to detect the dominant fine structure cooling lines from high-redshift ULIRGs, measure their energetics and trace their evolution with redshift.
    Monthly Notices of the Royal Astronomical Society 09/2012; 427(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used data from the Herschel-ATLAS at 250, 350 and 500 \mu m to determine the far-infrared (FIR) properties of 50 Broad Absorption Line Quasars (BAL QSOs). Our sample contains 49 high-ionization BAL QSOs (HiBALs) and 1 low-ionization BAL QSO (LoBAL) which are compared against a sample of 329 non-BAL QSOs. These samples are matched over the redshift range 1.5 \leq z < 2.3 and in absolute i-band magnitude over the range -28 \leq M_{i} \leq -24. Of these, 3 BAL QSOs (HiBALs) and 27 non-BAL QSOs are detected at the > 5 sigma level. We calculate star-formation rates (SFR) for our individually detected HiBAL QSOs and the non-detected LoBAL QSO as well as average SFRs for the BAL and non-BAL QSO samples based on stacking the Herschel data. We find no difference between the HiBAL and non-BAL QSO samples in the FIR, even when separated based on differing BAL QSO classifications. Using Mrk 231 as a template, the weighted mean SFR is estimated to be \approx240\pm21 M_{\odot} yr^{-1} for the full sample, although this figure should be treated as an upper limit if AGN-heated dust makes a contribution to the FIR emission. Despite tentative claims in the literature, we do not find a dependence of {\sc C\,iv} equivalent width on FIR emission, suggesting that the strength of any outflow in these objects is not linked to their FIR output. These results strongly suggest that BAL QSOs (more specifically HiBALs) can be accommodated within a simple AGN unified scheme in which our line-of-sight to the nucleus intersects outflowing material. Models in which HiBALs are caught towards the end of a period of enhanced spheroid and black-hole growth, during which a wind terminates the star-formation activity, are not supported by the observed FIR properties.
    Monthly Notices of the Royal Astronomical Society 09/2012; 427(2). · 5.52 Impact Factor

Publication Stats

1k Citations
420.05 Total Impact Points

Institutions

  • 2014
    • University of Hertfordshire
      • Centre for Astrophysics Research (CAR)
      Hatfield, England, United Kingdom
  • 2013
    • Pennsylvania State University
      • Department of Astronomy and Astrophysics
      University Park, Maryland, United States
  • 2010–2013
    • McGill University
      • Department of Physics
      Montréal, Quebec, Canada
  • 2007–2012
    • Durham University
      • • Institute for Computational Cosmology "ICC"
      • • Department of Physics
      Durham, England, United Kingdom
  • 2011
    • Institute for Research in Fundamental Sciences (IPM)
      • School of Astronomy
      Teheran, Tehrān, Iran
  • 2008–2009
    • The Royal Observatory, Edinburgh
      Edinburgh, Scotland, United Kingdom
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, SCT, United Kingdom
    • National Optical Astronomy Observatory
      Tucson, Arizona, United States
  • 2004–2008
    • University of British Columbia - Vancouver
      • Department of Physics and Astronomy
      Vancouver, British Columbia, Canada
  • 2005
    • University of California, Irvine
      • Department of Physics and Astronomy
      Irvine, California, United States