Michael L. Brown

The University of Manchester, Manchester, England, United Kingdom

Are you Michael L. Brown?

Claim your profile

Publications (21)53.29 Total impact

  • Source
    Lee Whittaker, Michael L. Brown, Richard A. Battye
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop and apply the position angle-only shear estimator of Whittaker et al. (2014) to realistic galaxy images. This is done by demonstrating the method on the simulations of the GREAT3 challenge (Mandelbaum et al. 2014b), which include contributions from anisotropic PSFs. We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q~400. The code is freely available online at http://www.jb.man.ac.uk/~mbrown/angle_only_shear/.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the astrophysics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of intrinsic alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments took on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes intrinsic alignments an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in large-scale structure tend to align the shapes and angular momenta of nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both $N$-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With the temperature power spectrum of the cosmic microwave background (CMB) at least four orders of magnitude larger than the B-mode polarisation power spectrum, any instrumental imperfections that couple temperature to polarisation must be carefully controlled and/or removed. Here we present two new map-making algorithms that can create polarisation maps that are clean of temperature-to-polarisation leakage systematics due to differential gain and pointing between a detector pair. Where a half wave plate is used, we show that the spin-2 systematic due to differential ellipticity can also by removed using our algorithms. The algorithms require no prior knowledge of the imperfections or temperature sky to remove the temperature leakage. Instead, they calculate the systematic and polarisation maps in one step directly from the time ordered data (TOD). The first algorithm is designed to work with scan strategies that have a good range of crossing angles for each map pixel and the second for scan strategies that have a limited range of crossing angles. The first algorithm can also be used to identify if systematic errors that have a particular spin are present in a TOD. We demonstrate the use of both algorithms and the ability to identify systematics with simulations of TOD with realistic scan strategies and instrumental noise.
  • Source
    Lee Whittaker, Michael L. Brown, Richard A. Battye
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss methods for performing weak lensing using radio observations to recover information about the intrinsic structural properties of the source galaxies. Radio surveys provide unique information that can benefit weak lensing studies, such as HI emission, which may be used to construct galaxy velocity maps, and polarized synchrotron radiation; both of which provide information about the unlensed galaxy and can be used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using a proxy for the intrinsic position angle of an observed galaxy, we develop techniques for cleanly separating weak gravitational lensing signals from intrinsic alignment contamination in forthcoming radio surveys. Random errors on the intrinsic orientation estimates introduce biases into the shear and intrinsic alignment estimates. However, we show that these biases can be corrected for if the error distribution is accurately known. We demonstrate our methods using simulations, where we reconstruct the shear and intrinsic alignment auto and cross-power spectra in three overlapping redshift bins. We find that the intrinsic position angle information can be used to successfully reconstruct both the lensing and intrinsic alignment power spectra with negligible residual bias.
    Monthly Notices of the Royal Astronomical Society 02/2015; 451(1). DOI:10.1093/mnras/stv993 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past few years two of the largest and highest fidelity experiments conceived have been approved for construction: Euclid is an ESA M-Class mission that will map three-quarters of the extra galactic sky with Hubble Space Telescope resolution optical and NIR imaging, and NIR spectroscopy, its scientific aims (amongst others) are to create a map of the dark Universe and to determine the nature of dark energy. The Square Kilometre Array (SKA) has similar scientific aims (and others) using radio wavelength observations. The two experiments are synergistic in several respects, both through the scientific objectives and through the control of systematic effects. SKA Phase-1 and Euclid will be commissioned on similar timescales offering an exciting opportunity to exploit synergies between these facilities.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Weak gravitational lensing measurements are traditionally made at optical wavelengths where many highly resolved galaxy images are readily available. However, the Square Kilometre Array (SKA) holds great promise for this type of measurement at radio wavelengths owing to its greatly increased sensitivity and resolution over typical radio surveys. The key to successful weak lensing experiments is in measuring the shapes of detected sources to high accuracy. In this document we describe a simulation pipeline designed to simulate radio images of the quality required for weak lensing, and will be typical of SKA observations. We provide as input, images with realistic galaxy shapes which are then simulated to produce images as they would have been observed with a given radio interferometer. We exploit this pipeline to investigate various stages of a weak lensing experiment in order to better understand the effects that may impact shape measurement. We first show how the proposed SKA1-Mid array configurations perform when we compare the (known) input and output ellipticities. We then investigate how making small changes to these array configurations impact on this input-outut ellipticity comparison. We also demonstrate how alternative configurations for SKA1-Mid that are smaller in extent, and with a faster survey speeds produce similar performance to those originally proposed. We then show how a notional SKA configuration performs in the same shape measurement challenge. Finally, we describe ongoing efforts to utilise our simulation pipeline to address questions relating to how applicable current (mostly originating from optical data) shape measurement techniques are to future radio surveys. As an alternative to such image plane techniques, we lastly discuss a shape measurement technique based on the shapelets formalism that reconstructs the source shapes directly from the visibility data.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radio continuum surveys have, in the past, been of restricted use in cosmology. Most studies have concentrated on cross-correlations with the cosmic microwave background to detect the integrated Sachs-Wolfe effect, due to the large sky areas that can be surveyed. As we move into the SKA era, radio continuum surveys will have sufficient source density and sky area to play a major role in cosmology on the largest scales. In this chapter we summarise the experiments that can be carried out with the SKA as it is built up through the coming decade. We show that the SKA can play a unique role in constraining the non-Gaussianity parameter to \sigma(f_NL) ~ 1, and provide a unique handle on the systematics that inhibit weak lensing surveys. The SKA will also provide the necessary data to test the isotropy of the Universe at redshifts of order unity and thus evaluate the robustness of the cosmological principle.Thus, SKA continuum surveys will turn radio observations into a central probe of cosmological research in the coming decades.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We give an overview of complementarity and synergy in cosmology between the Square Kilometre Array and future survey projects in other wavelengths. In the SKA era, precision cosmology will be limited by systematic errors and cosmic variance, rather than statistical errors. However, combining and/or cross-correlating multi-wavelength data, from the SKA to the cosmic microwave background, optical/infrared and X-ray, substantially reduce these limiting factors. In this chapter, we summarize future survey projects and show highlights of complementarity and synergy, which can be very powerful to probe major cosmological problems such as dark energy, modified gravity and primordial non-Gaussianity.
  • Source
    Anna Bonaldi, Michael L. Brown
    [Show abstract] [Hide abstract]
    ABSTRACT: We apply the Correlated Component Analysis (CCA) method on simulated data of the Square Kilometre Array, with the aim of accurately cleaning the 21 cm reionization signal from diffuse foreground contamination. The CCA has been developed for the Cosmic Microwave Background, but the application of the Fourier-domain implementation of this method to the reionization signal is straightforward. The CCA is a parametric method to estimate the frequency behaviour of the foregrounds from the data by using second-order statistics. We test its performance on foreground simulations of increasing complexity, designed to challenge the parametric models adopted. We also drop the assumption of spectral smoothness that most of the methods rely upon. We are able to clean effectively the simulated data across the explored frequency range (100-200 MHz) for all the foreground simulations. This shows that the CCA method is very promising for EoR component separation.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asymmetric beams can create significant bias in estimates of the power spectra from cosmic microwave background (CMB) experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum, any systematic error that couples the two must be carefully controlled and/or removed. Here, we derive unbiased estimators for the CMB temperature and polarization power spectra taking into account general beams and general scan strategies. A simple consequence of asymmetric beams is that, even with an ideal scan strategy where every sky pixel is seen at every orientation, there will be residual coupling from temperature power to B-mode power if the orientation of the beam asymmetry is not aligned with the orientation of the co-polarization. We test our correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. The simulated experiments use realistic scan strategies, noise levels and highly asymmetric beams. We also develop a map-making algorithm that is capable of removing beam asymmetry bias at the map level. We demonstrate its implementation using simulations and show that it is capable of accurately correcting both temperature and polarization maps for all of the effects of beam asymmetry including the effects of temperature to polarization leakage.
    Monthly Notices of the Royal Astronomical Society 06/2014; 442(3):1963-1979. DOI:10.1093/mnras/stu856 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asymmetric beams can create significant bias in estimates of the power spectra from CMB experiments. With the temperature power spectrum many orders of magnitude stronger than the B-mode power spectrum any systematic error that couples the two must be carefully controlled and/or removed. Here, we derive unbiased estimators for the CMB temperature and polarisation power spectra taking into account general beams and general scan strategies. A simple consequence of asymmetric beams is that, even with an ideal scan strategy where every sky pixel is seen at every orientation, there will be residual coupling from temperature power to B-mode power if the orientation of the beam asymmetry is not aligned with the orientation of the co-polarisation. We test our correction algorithm on simulations of two temperature-only experiments and demonstrate that it is unbiased. The simulated experiments use realistic scan strategies, noise levels and highly asymmetric beams. We also develop a map-making algorithm that is capable of removing beam asymmetry bias at the map level. We demonstrate its implementation using simulations and show that it is capable of accurately correcting both temperature and polarisation maps for all of the effects of beam asymmetry including the effects of temperature to polarisation leakage.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a finely-binned tomographic weak lensing analysis of the Canada-France-Hawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm =0.70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1.5<theta<35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum sigma_8 = 0.799 +/- 0.015 and the matter density parameter Omega_m = 0.271 +/- 0.010 for a flat Lambda CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = -1.02 +/- 0.09. We also provide constraints for curved Lambda CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.
    Monthly Notices of the Royal Astronomical Society 03/2013; 432(3). DOI:10.1093/mnras/stt601 · 5.23 Impact Factor
  • Source
    Michael L. Brown, Richard A. Battye
    [Show abstract] [Hide abstract]
    ABSTRACT: In a recent paper (Brown & Battye 2011), we proposed the use of integrated polarization measurements of background galaxies in radio weak gravitational lensing surveys and investigated the potential impact on the statistical measurement of cosmic shear. Here we extend this idea to reconstruct maps of the projected dark matter distribution, or lensing convergence field. The addition of polarization can, in principle, greatly reduce shape noise due to the intrinsic dispersion in galaxy ellipticities. We show that maps reconstructed using this technique in the radio band can be competitive with those derived using standard lensing techniques which make use of many more galaxies. In addition, since the reconstruction noise is uncorrelated between these standard techniques and the polarization technique, their comparison can serve as a powerful check for systematics and their combination can reduce noise further. We examine the convergence reconstruction which could be achieved with two forthcoming facilities: (i) a deep survey, covering 1.75 square degrees using the e-MERLIN instrument currently being commissioned in the UK and (ii) the high resolution, deep wide field surveys which will eventually be conducted with the Square Kilometre Array.
    The Astrophysical Journal Letters 01/2011; DOI:10.1088/2041-8205/735/1/L23 · 5.60 Impact Factor
  • Source
    Yin-Zhe Ma, Wen Zhao, Michael L. Brown
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the observational signatures of three models of the early Universe in the $B$-mode polarization of the Cosmic Microwave Background (CMB) radiation. In addition to the standard single field inflationary model, we also consider the constraints obtainable on the loop quantum cosmology model (from Loop Quantum Gravity) and on cosmic strings, expected to be copiously produced during the latter stages of Brane inflation. We first examine the observational features of the three models, and then use current $B$-mode polarization data from the BICEP and QUaD experiments to constrain their parameters. We also examine the detectability of the primordial $B$-mode signal predicted by these models and forecast the parameter constraints achievable with future CMB polarization experiments. We find that: (a) these three models of the early Universe predict different features in the CMB B-mode polarization power spectrum, which are potentially distinguishable from the CMB experiments; (b) since $B$-mode polarization measurements are mostly unaffected by parameter degeneracies, they provide the cleanest probe of these early Universe models; (c) using the BICEP and QUaD data we obtain the following parameter constraints: $r=0.02^{+0.31}_{-0.26}$ ($1\sigma$ for the tensor-to-scalar ratio in the single field inflationary model); $m < 1.36\times 10^{-8} \text{M}_{\text{pl}}$ and $k_{*} < 2.43 \times 10^{-4} \text{Mpc}^{-1}$ ($1\sigma$ for the mass and scale parameters in the loop quantum cosmology model); and $G\mu < 5.77 \times 10^{-7}$ ($1\sigma$ for the cosmic string tension); (d) future CMB observations (both satellite missions and forthcoming sub-orbital experiments) will provide much more rigorous tests of these early Universe models.
    Journal of Cosmology and Astroparticle Physics 07/2010; 10(10). DOI:10.1088/1475-7516/2010/10/007 · 5.88 Impact Factor
  • Source
    Michael L. Brown, Richard A. Battye
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a new technique for weak gravitational lensing in the radio band making use of polarization information. Since the orientation of a galaxy's polarized emission is both unaffected by lensing and is related to the galaxy's intrinsic orientation, it effectively provides information on the unlensed galaxy position angle. We derive a new weak lensing estimator which exploits this effect and makes full use of both the observed galaxy shapes and the estimates of the intrinsic position angles as provided by polarization. Our method has the potential to both reduce the effects of shot noise, and to reduce to negligible levels, in a model-independent way, all effects of intrinsic galaxy alignments. We test our technique on simulated weak lensing skies, including an intrinsic alignment contaminant consistent with recent observations, in three overlapping redshift bins. Adopting a standard weak lensing analysis and ignoring intrinsic alignments results in biases of 5-10% in the recovered power spectra and cosmological parameters. Applying our new estimator to one tenth the number of galaxies used for the standard case, we recover both power spectra and the input cosmology with similar precision as compared to the standard case and with negligible residual bias, even in the presence of a substantial (astrophysical) scatter in the relationship between the observed orientation of the polarized emission and the intrinsic orientation. Assuming a reasonable polarization fraction for star-forming galaxies, and no cosmological conspiracy in the relationship between polarization direction and intrinsic morphology, our estimator should prove a valuable tool for weak lensing analyses of forthcoming radio surveys, in particular, deep wide field surveys with e-MERLIN, MeerKAT and ASKAP and ultimately, definitive radio lensing surveys with the SKA. Comment: 18 pages, 10 figures, submitted to MNRAS
    Monthly Notices of the Royal Astronomical Society 05/2010; 410(3). DOI:10.1111/j.1365-2966.2010.17583.x · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the impact of both slow and fast polarization modulation strategies on the science return of upcoming ground-based experiments aimed at measuring the B-mode polarization of the CMB. Using simulations of the Clover experiment, we compare the ability of modulated and un-modulated observations to recover the signature of gravitational waves in the polarized CMB sky in the presence of a number of anticipated systematic effects. The general expectations that fast modulation is helpful in mitigating low-frequency detector noise, and that the additional redundancy in the projection of the instrument's polarization sensitivity directions onto the sky when modulating reduces the impact of instrumental polarization, are borne out by our simulations. Neither low-frequency polarized atmospheric fluctuations nor systematic errors in the polarization sensitivity directions are mitigated by modulation. Additionally, we find no significant reduction in the effect of pointing errors by modulation. For a Clover-like experiment, pointing jitter should be negligible but any systematic mis-calibration of the polarization coordinate reference system results in significant E-B mixing on all angular scales and will require careful control. We also stress the importance of combining data from multiple detectors in order to remove the effects of common-mode systematics (such as 1/f atmospheric noise) on the measured polarization signal. Finally we compare the performance of our simulated experiment with the predicted performance from a Fisher analysis. We find good agreement between the Fisher predictions and the simulations except for the very largest scales where the power spectrum estimator we have used introduces additional variance to the B-mode signal recovered from our simulations. Comment: Replaced with version accepted by MNRAS. Analysis of half-wave plate systematic (differential transmittance) added
    Monthly Notices of the Royal Astronomical Society 09/2008; 397(2). DOI:10.1111/j.1365-2966.2009.14975.x · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present our cosmic shear analysis of the Galaxy Evolution from Morphology and SEDs (GEMS) survey. Imaged with the Advanced Camera for Surveys (ACS) on HST, GEMS provides high resolution imaging spanning some 800 square arcmins in the Chandra Deep Field South (CDFS). We discuss the benefits of using space-based data for weak lensing studies and show that the ACS is a very powerful instrument in this regard. We find that we are not limited by systematic errors arising from the anisotropic ACS point spread function distortion and use our cosmic shear results to place joint constraints on the matter density parameter Omegam and the amplitude of the matter power spectrum sigma8, finding sigma8(Omegam/0.3)0.62=0.73 ± 0.12.
    Proceedings of the International Astronomical Union 07/2005; DOI:10.1017/S174392130500178X
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Shear TEsting Programme, STEP, is a collaborative project to improve the accuracy and reliability of all weak lensing measurements in preparation for the next generation of wide-field surveys. In this first STEP paper we present the results of a blind analysis of simulated ground-based observations of relatively simple galaxy morphologies. The most successful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that have been used to constrain cosmology, we find weak lensing shear measured to an accuracy that is within the statistical errors of current weak lensing analyses, with shear measurements accurate to better than 7%. The dominant source of measurement error is shown to arise from calibration uncertainties where the measured shear is over or under-estimated by a constant multiplicative factor. This is of concern as calibration errors cannot be detected through standard diagnostic tests. The measured calibration errors appear to result from stellar contamination, false object detection, the shear measurement method itself, selection bias and/or the use of biased weights. Additive systematics (false detections of shear) resulting from residual point-spread function anisotropy are, in most cases, reduced to below an equivalent shear of 0.001, an order of magnitude below cosmic shear distortions on the scales probed by current surveys. Our results provide a snapshot view of the accuracy of current ground-based weak lensing methods and a benchmark upon which we can improve. To this end we provide descriptions of each method tested and include details of the eight different implementations of the commonly used Kaiser, Squires and Broadhurst (1995) method (KSB+) to aid the improvement of future KSB+ analyses. Comment: 18 pages, 5 figures. Version accepted by MNRAS includes 2 extra explanatory figures and updated results for the Kuijken analysis (see astroph/0601011)
    Monthly Notices of the Royal Astronomical Society 06/2005; DOI:10.1111/j.1365-2966.2006.10198.x · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present our cosmic shear analysis of GEMS, one of the largest wide-field surveys ever undertaken by the Hubble Space Telescope. Imaged with the Advanced Camera for Surveys (ACS), GEMS spans 795 square arcmin in the Chandra Deep Field South. We detect weak lensing by large-scale structure in high resolution F606W GEMS data from ~60 resolved galaxies per square arcminute. We measure the two-point shear correlation function, the top-hat shear variance and the shear power spectrum, performing an E/B mode decomposition for each statistic. We show that we are not limited by systematic errors and use our results to place joint constraints on the matter density parameter Omega_m and the amplitude of the matter power spectrum sigma_8. We find sigma_8(Omega_m/0.3)^{0.65}=0.68 +/- 0.13 where the 1sigma error includes both our uncertainty on the median redshift of the survey and sampling variance. Removing image and point spread function (PSF) distortions are crucial to all weak lensing analyses. We therefore include a thorough discussion on the degree of ACS PSF distortion and anisotropy which we characterise directly from GEMS data. Consecutively imaged over 20 days, GEMS data also allows us to investigate PSF instability over time. We find that, even in the relatively short GEMS observing period, the ACS PSF ellipticity varies at the level of a few percent which we account for with a semi-time dependent PSF model. Our correction for the temporal and spatial variability of the PSF is shown to be successful through a series of diagnostic tests. Comment: 17 pages, 16 figures. Version accepted by MNRAS
    Monthly Notices of the Royal Astronomical Society 11/2004; DOI:10.1111/j.1365-2966.2005.09152.x · 5.23 Impact Factor