Peter J Cowan

St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia

Are you Peter J Cowan?

Claim your profile

Publications (142)545.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Galactosyl-transferase KO (GalT-KO) pigs represent a potential solution to xenograft rejection, particularly in the context of additional genetic modifications. We have performed life supporting kidney xenotransplantation into baboons utilizing GalT-KO pigs transgenic for human CD55/CD59/CD39/HT. Baboons received tacrolimus, mycophenolate mofetil, corticosteroids and recombinant human C1 inhibitor combined with cyclophosphamide or bortezomib with or without 2-3 plasma exchanges. One baboon received a control GalT-KO xenograft with the latter immunosuppression. All immunosuppressed baboons rejected the xenografts between days 9 and 15 with signs of acute humoral rejection, in contrast to untreated controls (n = 2) that lost their grafts on days 3 and 4. Immunofluorescence analyses showed deposition of IgM, C3, C5b-9 in rejected grafts, without C4d staining, indicating classical complement pathway blockade but alternate pathway activation. Moreover, rejected organs exhibited predominantly monocyte/macrophage infiltration with minimal lymphocyte representation. None of the recipients showed any signs of porcine endogenous retrovirus transmission but some showed evidence of porcine cytomegalovirus (PCMV) replication within the xenografts. Our work indicates that the addition of bortezomib and plasma exchange to the immunosuppressive regimen did not significantly prolong the survival of multi-transgenic GalT-KO renal xenografts. Non-Gal antibodies, the alternative complement pathway, innate mechanisms with monocyte activation and PCMV replication may have contributed to rejection. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
    02/2015; 15(2):358-70.
  • V. Roberts, B. Lu, K.M. Dwyer, P.J. Cowan
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term renal allograft survival has not improved despite improvements in short term outcomes. Graft loss is characterized histologically by the development of interstitial fibrosis and tubular atrophy (IFTA). Mechanisms underlying the development of IFTA are multifactorial and include ischemia-reperfusion injury (IRI). Therapeutic options to reduce IFTA include management of immunologic causes, such as rejection, but despite these efforts IFTA can still occur and leads to the inexorable destruction of the transplanted kidney. The adenosine A2B receptor (A2BR) has recently been implicated in the development of renal fibrosis. We performed an observational study to examine the mRNA expression of the adenosine receptors after renal ischemia up to the development of renal fibrosis in a mouse model of unilateral IRI. A2BR was the only adenosine receptor that showed elevated expression following ischemia until the development of renal fibrosis 4 weeks after injury. At 2 weeks after ischemia, increased expression of the fibrotic markers transforming growth factor β and Collagen-1α was observed. Expression of hypoxia inducible factor 1α and endothelin-1, which lie downstream of A2BR activation and have been recognized to promote renal fibrosis, were also significantly up-regulated at 2 weeks after ischemia. Expression of fibrotic markers returned to baseline by 4 weeks after ischemia, indicating resolution of injury with the concurrent development of renal fibrosis and reduced renal function. Our data suggest that A2BR may be a therapeutic target in reducing the development of renal fibrosis after ischemia.
    Transplantation Proceedings 12/2014; · 0.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycosylation processes are under high natural selection pressure, presumably because these can modulate resistance to infection. Here, we asked whether inactivation of the UDP-galactose:β-galactoside-α1-3-galactosyltransferase (α1,3GT) gene, which ablated the expression of the Galα1-3Galβ1-4GlcNAc-R (α-gal) glycan and allowed for the production of anti-α-gal antibodies (Abs) in humans, confers protection against Plasmodium spp. infection, the causative agent of malaria and a major driving force in human evolution. We demonstrate that both Plasmodium spp. and the human gut pathobiont E. coli O86:B7 express α-gal and that anti-α-gal Abs are associated with protection against malaria transmission in humans as well as in α1,3GT-deficient mice, which produce protective anti-α-gal Abs when colonized by E. coli O86:B7. Anti-α-gal Abs target Plasmodium sporozoites for complement-mediated cytotoxicity in the skin, immediately after inoculation by Anopheles mosquitoes. Vaccination against α-gal confers sterile protection against malaria in mice, suggesting that a similar approach may reduce malaria transmission in humans. PAPERFLICK: Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell 12/2014; 159(6):1277-89. · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies (mAbs) have been a spectacular clinical and commercial success in the treatment of cancer and autoimmune diseases. Many of these mAbs (for example, OKT3, Campath-1H, rituximab and infliximab) are against surface or secreted products of lymphocytes. However, mAbs can have a variety of adverse effects including fever, chills and nausea. This is probably a result of cytokine release, which is most seriously manifested as a 'cytokine storm' as highlighted by the TGN1412 (anti-CD28) trial. Prediction of adverse effects of mAbs would be clinically advantageous and numerous in vitro assays attempting to predict adverse effects have been reported. Here, we report an in vivo humanized mouse model to detect adverse effects in response to OKT3, Campath-1H or the polyclonal Ab preparation anti-thymocyte globulin. We found that the administration of each of these Abs to humanized mice led to acute clinical symptoms such as piloerection, hypomotility and hypothermia, particularly when delivered via the intravenous route. A cytokine storm occurred in the humanized mice receiving OKT3. This model system is a potentially useful tool to predict adverse effects and select initial doses for first-in-human trials. We would advocate this in vivo model, in addition to current in vitro preclinical testing, as a more representative and robust means of assessing potential adverse effects of mAb before their human use.
    Clinical & translational immunology. 12/2014; 3(12):e29.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A subgroup of the cholesterol-dependent cytolysin (CDC) family of pore-forming toxins (PFTs) has an unusually narrow host range due to a requirement for binding to human CD59 (hCD59), a glycosylphosphatidylinositol (GPI)-linked complement regulatory molecule. hCD59-specific CDCs are produced by several organisms that inhabit human mucosal surfaces and can act as pathogens, including Gardnerella vaginalis and Streptococcus intermedius. The consequences and potential selective advantages of such PFT host limitation have remained unknown. Here, we demonstrate that, in addition to species restriction, PFT ligation of hCD59 triggers a previously unrecognized pathway for programmed necrosis in primary erythrocytes (red blood cells [RBCs]) from humans and transgenic mice expressing hCD59. Because they lack nuclei and mitochondria, RBCs have typically been thought to possess limited capacity to undergo programmed cell death. RBC programmed necrosis shares key molecular factors with nucleated cell necroptosis, including dependence on Fas/FasL signaling and RIP1 phosphorylation, necrosome assembly, and restriction by caspase-8. Death due to programmed necrosis in RBCs is executed by acid sphingomyelinase-dependent ceramide formation, NADPH oxidase- and iron-dependent reactive oxygen species formation, and glycolytic formation of advanced glycation end products. Bacterial PFTs that are hCD59 independent do not induce RBC programmed necrosis. RBC programmed necrosis is biochemically distinct from eryptosis, the only other known programmed cell death pathway in mature RBCs. Importantly, RBC programmed necrosis enhances the growth of PFT-producing pathogens during exposure to primary RBCs, consistent with a role for such signaling in microbial growth and pathogenesis.
    mBio 08/2014; 5(5). · 6.88 Impact Factor
  • Source
    mBio 08/2014; 5(5):e01251-14. · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renal fibrosis, the key histopathological lesion in the development and progression of chronic kidney disease (CKD), has been the focus of much research in recent decades. The growing burden of CKD in both developed and developing nations highlights a need for novel therapies to halt the progression of renal disease. Insights into the pathogenesis of renal fibrosis and the key cellular and molecular mediators have been critical in the process of identifying potential targets of therapy. Adenosine signaling is an innate biological autocrine and paracrine cellular signaling pathway involving several key mediators: ectonucleotidases, adenosine, and adenosine receptors. Short-term activation of the adenosine A2A and A2B receptors decreases inflammation, which precedes renal fibrosis. However, in conditions of persistent, excessive adenosine exposure, such as in patients born with adenosine deaminase (ADA) deficiency, adenosine signaling via A2B receptor promotes renal fibrosis, as seen in chronic inflammation. This review will describe the increasingly recognized complex role of adenosine signaling in the development of renal fibrosis. We will speculate how the knowledge gained may be employed in the search for more effective therapies based on these complex signaling pathways.Kidney International advance online publication, 23 July 2014; doi:10.1038/ki.2014.244.
    Kidney International 07/2014; · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Human corneal allografting is an established procedure to cure corneal blindness. However, a shortage of human donor corneas as well as compounding economic, cultural, and organizational reasons in many countries limit its widespread use. Artificial corneas as well as porcine corneal xenografts have been considered as possible alternatives. To date, all preclinical studies using de-cellularized pig corneas have shown encouraging graft survival results; however, relatively few studies have been conducted in pig to non-human primate (NHP) models, and particularly using genetically engineered donors.Methods In this study, we assessed the potential benefit of using either hCTLA4-Ig transgenic or α1,3-Galactosyl Transferase (GT) Knock-Out (KO) plus transgenic hCD39/hCD55/hCD59/fucosyl-transferase pig lines in an anterior lamellar keratoplasty pig to NHP model.ResultsCorneas from transgenic animals expressing hCTLA4-Ig under the transcriptional control of a neuron-specific enolase promoter showed transgene expression in corneal keratocytes of the stroma and expression was maintained after transplantation. Although a first acute rejection episode occurred in all animals during the second week post-keratoplasty, the median final rejection time was 70 days in the hCTLA4-Ig group vs. 21 days in the wild-type (WT) control group. In contrast, no benefit for corneal xenograft survival from the GTKO/transgenic pig line was found. At rejection, cell infiltration in hCTLA4Ig transgenic grafts was mainly composed of macrophages with fewer CD3+ CD4+ and CD79+ cells than in other types of grafts. Anti-donor xenoantibodies increased dramatically between days 9 and 14 post-surgery in all animals.Conclusions Local expression of the hCTLA4-Ig transgene dampens rejection of xenogeneic corneal grafts in this pig-to-NHP lamellar keratoplasty model. The hCTLA4-Ig transgene seems to target T-cell responses without impacting humoral responses, the control of which would presumably require additional peripheral immunosuppression.
    Xenotransplantation 07/2014; · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The instant blood-mediated inflammatory reaction (IBMIR) is a major obstacle to the engraftment of intraportal pig islet xenografts in primates. Higher expression of the galactose-α1,3-galactose (αGal) xenoantigen on neonatal islet cell clusters (NICC) than on adult pig islets may provoke a stronger reaction, but this has not been tested in the baboon model. Here, we report that WT pig NICC xenografts triggered profound IBMIR in baboons, with intravascular clotting and graft destruction occurring within hours, which was not prevented by anti-thrombin treatment. In contrast, IBMIR was minimal when recipients were immunosuppressed with a clinically relevant protocol and transplanted with NICC from αGal-deficient pigs transgenic for the human complement regulators CD55 and CD59. These genetically modified (GM) NICC were less susceptible to humoral injury in vitro than WT NICC, inducing significantly less complement activation and thrombin generation when incubated with baboon platelet-poor plasma. Recipients of GM NICC developed a variable anti-pig antibody response, and examination of the grafts 1 month after transplant revealed significant cell-mediated rejection, although scattered insulin-positive cells were still present. Our results indicate that IBMIR can be attenuated in this model, but long-term graft survival may require more effective immunosuppression or further donor genetic modification.
    American Journal of Transplantation 05/2014; 14(6). · 6.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells.MethodsA recombinant xenoantibody was generated using sequences from baboons demonstrating an active xenoantibody response at day 28 after GTKO/hCD55/hCD59/hHT transgenic pig neonatal islet cell cluster transplantation. Rhesus monkeys were immunized with GTKO pig endothelial cells to stimulate an anti-non-Gal xenoantibody response. Serum was collected at days 0 and 7 after immunization. A two-stage chromogenic assay was used to measure FVIII cofactor activity and identify antibodies which inhibit FVIII function. Molecular modeling and molecular dynamics simulations were used to predict antibody structure and the residues which contribute to antibody-FVIII interactions. Competition ELISA was used to verify predictions at the domain structural level.ResultsAntibodies that inhibit recombinant human FVIII function are elicited after non-human primates are transplanted with either GTKO pig neonatal islet cell clusters or endothelial cells. There is an apparent increase in inhibitor titer by 15 Bethesda units (Bu) after transplant, where an increase greater than 5 Bu can indicate pathology in humans. Furthermore, competition ELISA verifies the computer modeled prediction that the recombinant xenoantibody, H66K12, binds the C1 domain of FVIII.Conclusions The development of FVIII inhibitors is a novel illustration of the potential impact the humoral immune response can have on coagulative dysfunction in xenotransplantation. However, the contribution of these antibodies to rejection pathology requires further evaluation because “normal” coagulation parameters after successful xenotransplantation are not fully understood.
    Xenotransplantation 05/2014; · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundB-cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-non-Gal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen/xenoantibody interactions could prolong xenograft survival while preserving B-cell-mediated immune surveillance.Methods The anti-idiotypic antibody, B4N190, was selected from a synthetic human phage display library after enrichment against a recombinant anti-non-Gal xenoantibody followed by functional testing in vitro. The inhibitory small molecule, JMS022, was selected from the NCI diversity set III using virtual screening based on predicted xenoantibody structure. Three rhesus monkeys were pre-treated with anti-non-Gal-specific single-chain anti-idiotypic antibody, B4N190. A total of five monkeys, including two untreated controls, were then immunized with GTKO porcine endothelial cells to initiate an anti-non-α-1,3-Gal (non-Gal) xenoantibody response. The efficacy of the inhibitory small molecule specific for anti-non-Gal xenoantibody, JMS022, was tested in vitro.ResultsAfter the combination of in vivo anti-id and in vitro small molecule treatments, IgM xenoantibody binding to GTKO cells was reduced to pre-immunization levels in two-thirds of animals; however, some xenoantibodies remained in the third animal. Furthermore, when treated with anti-id alone, all three experimental animals displayed a lower anti-non-Gal IgG xenoantibody response compared with controls. Treatment with anti-idiotypic antibody alone reduced IgM xenoantibody response intensity in only one of three monkeys injected with GTKO pig endothelial cells. In the one experimental animal, which displayed reduced IgM and IgG responses, select B-cell subsets were also reduced by anti-id therapy alone. Furthermore, natural antibody responses, including anti-laminin, anti-ssDNA, and anti-thyroglobulin antibodies were intact despite targeted depletion of anti-non-Gal xenoantibodies in vivo indicating that selective reduction of xenoantibodies can be accomplished without total B-cell depletion.Conclusions This preliminary study demonstrates the strength of approaches designed to selectively inhibit anti-non-Gal xenoantibody. Both anti-non-Gal-specific anti-idiotypic antibody and small molecules can be used to selectively limit xenoantibody responses.
    Xenotransplantation 03/2014; · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Promising developments in porcine islet xenotransplantation could resolve the donor pancreas shortage for patients with type 1 diabetes. Using α1,3-galactosyltransferase gene knockout (GTKO) donor pigs with multiple transgenes should extend xenoislet survival via reducing complement activation, thrombus formation, and the requirement for exogenous immune suppression. Studying the xenoantibody response to GTKO/hCD55/hCD59/hHT islets in the pig-to-baboon model, and comparing it with previously analyzed responses, would allow the development of inhibitory reagents capable of targeting conserved idiotypic regions.Methods We generated IgM heavy and light chain gene libraries from 10 untreated baboons and three baboons at 28 days following transplantation of GTKO/hCD55/hCD59/hHT pig neonatal islet cell clusters with immunosuppression. Flow cytometry was used to confirm the induction of a xenoantibody response. IgM germline gene usage was compared pre- and post-transplant. Homology modeling was used to compare the structure of xenoantibodies elicited after transplantation of GTKO/hCD55/hCD59/hHT pig islets with those induced by GTKO and wild-type pig endothelial cells without further genetic modification.ResultsIgM xenoantibodies that bind to GTKO pig cells and wild-type pig cells were induced after transplantation. These anti-non-Gal antibodies were encoded by the IGHV3-66*02 (Δ28%) and IGKV1-12*02 (Δ25%) alleles, for the immunoglobulin heavy and light chains, respectively. IGHV3-66 is 86.7% similar to IGHV3-21 which was elicited by rhesus monkeys in response to GTKO endothelial cells. Heavy chain genes most similar to IGHV3-66 were found to utilize the IGHJ4 gene in 85% of V-D regions analyzed. However, unlike the wild-type response, a consensus complementary determining region 3 was not identified.Conclusions Additional genetic modifications in transgenic GTKO pigs do not substantially modify the structure of the restricted group of anti-non-Gal xenoantibodies that mediate induced xenoantibody responses with or without immunosuppression. The use of this information to develop new therapeutic agents to target this restricted response will likely be beneficial for long-term islet cell survival and for developing targeted immunosuppressive regimens with less toxicity.
    Xenotransplantation 03/2014; · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differential protein glycosylation in the donor and recipient can have profound consequences for transplanted organs, as evident in ABO-incompatible transplantation and xenotransplantation. In this study, we investigated the impact of altered fucosylation on graft acceptance by using donor mice overexpressing human α1,2-fucosyltransferase (HTF). Skin and heart grafts from HTF transgenic mice were rapidly rejected by otherwise completely matched recipients (median survival times 16 and 14 days, respectively). HTF skin transplanted onto mice lacking T and B cells induced an natural killer cell-mediated innate rejection crisis that affected 50-95% of the graft at 10-20 days. However, in the absence of adaptive immunity, the residual graft recovered and survived long-term (>100 days). Experiments using "parked" grafts or MHC class II-deficient recipients suggested that indirect rather than direct antigen presentation plays a role in HTF skin graft rejection, although the putative antigen(s) was not identified. We conclude that altered glycosylation patterns on donor tissue can trigger a powerful rejection response comprising both innate and adaptive components. This has potential implications for allotransplantation, in light of increasing recognition of the variability of the human glycome, and for xenotransplantation, where carbohydrate remodeling has been a lynchpin of donor genetic modification.
    American Journal of Transplantation 02/2014; · 6.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a unique tool to address particular rejection mechanisms and incompatibilities: genetic modification of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and on the significant genetic, pharmacological, and technical progress that has been made to prolong xenograft survival.Kidney International advance online publication, 2 October 2013; doi:10.1038/ki.2013.381.
    Kidney International 10/2013; · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunological and histopathological features in pig-to-primate renal xenotransplantation are widely studied. Only limited data have been reported about clinicopathological findings in primate recipients of life-supporting renal xenografts. In human medicine, proteinuria represents a common complication in kidney transplantation and is associated with impaired graft survival. The detection of low molecular weight proteins of tubular origin is considered an early method for predicting potential graft rejection. In this study, the presence and the significance of quantitative and qualitative proteinuria were evaluated in xenotransplanted non-human primates in which kidney function was supported only by the transplanted organ. Eight bilaterally nephrectomized cynomolgus monkeys (Macaca fascicularis) were transplanted with a single kidney from α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for human CD39, CD55, CD59, and α1,2-fucosyltransferase. In addition to hematological and biochemical analyses, quantitative and qualitative analysis of proteinuria was evaluated by urinary protein-to-creatinine ratio (UPC ratio) and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE), respectively. The main hematological and biochemical changes recorded after transplantation were a progressive anemia and a severe and progressive decrease in total proteins. In urine samples, the UPC ratio was low before transplantation and increased after transplantation. Similarly, SDS-AGE was negative before transplantation, but bands consistent with mixed (i.e., tubular and glomerular) proteinuria were observed in all samples collected post-transplantation. The study of clinicopathological changes in cynomolgus monkey renal xenograft recipients provides a valid help in monitoring the health conditions in the post-transplant period. Moreover, the evaluation of UPC ratio and the use of SDS-AGE technique in urine samples of cynomolgus monkey renal xenograft recipients may be considered a valid, inexpensive, and less time-consuming method than more sophisticated techniques in monitoring proteinuria. Proteinuria and presence of low molecular weight (LMW) proteins were consistently found in urine after transplantation, independent of fluctuations in renal function.
    Xenotransplantation 09/2013; · 1.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is often desirable to co-express a reporter protein with a potential therapeutic protein, to verify correct targeting of an expression strategy. Vectors containing a viral self-processing 2A sequence have been reported to drive equimolar expression of two or more transgenes from a single promoter. Here, we report on the co-expression of a secreted antibody fragment and an intracellular reporter protein, enhanced yellow fluorescent protein from lentiviral shuttle plasmids by inserting a furin-2A (F2A) sequence between the two cDNAs, in two different orientations, in the expression cassette. We show that the order of these two transgenes relative to the F2A sequence affects expression levels. Reduced expression of each transgene positioned downstream of F2A, compared with upstream of F2A, was observed (p<0.05). Moreover, protein expression from double-cDNA plasmids was significantly lower than from their corresponding single transgene counterparts (p<0.05).
    Journal of immunological methods 08/2013; · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Beta cell replacement therapy has been proposed as a novel therapy for the treatment of type 1 diabetes. The proof of concept has been demonstrated with successful islet allotransplantation. Islet xenotransplantation has been proposed as an alternative, more reliable, and infinite source of beta cells. The advantages of islet xenotransplantation are the ability to transplant a well differentiated cell that is responsive to glucose and the potential for genetic modification which focuses the treatment on the donor rather than the recipient. The major hurdle remains overcoming the severe cellular rejection that affects xenografts. This review will focus on the major advances that have occurred with genetic modification and the successful therapeutic strategies that have been demonstrated in nonhuman primates. Novel approaches to overcome cell-mediated rejection including biological agents that target selectively costimulation molecules, the development of local immunosuppression through genetic manipulation, and encapsulation will be discussed. Overall, there has been considerable progress in all these areas, which eventually should lead to clinical trials.
    Current Diabetes Reports 08/2013; · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Xenotransplantation could provide a solution to the donor shortage that is currently the major barrier to solid-organ transplantation. The ability to breed pigs with multiple genetic modifications provides a unique opportunity to explore the immunologic challenges of pulmonary xenotransplantation. Explanted lungs from wild-type and 3 groups of genetically modified pigs were studied: (i) α1,3-galactosyltransferase gene knockout (GTKO); (ii) GTKO pigs expressing the human complementary regulatory proteins CD55 and CD59 (GTKO/CD55-59); and (iii) GTKO pigs expressing both CD55-59 and CD39 (GTKO/CD55-59/CD39). The physiologic, immunologic and histologic properties of porcine lungs were evaluated on an ex vivo rig after perfusion with human blood. Lungs from genetically modified pigs demonstrated stable pulmonary vascular resistance and better oxygenation of the perfusate, and survived longer than wild-type lungs. Physiologic function was inversely correlated with the degree of platelet sequestration into the xenograft. Despite superior physiologic profiles, lungs from genetically modified pigs still showed evidence of intravascular thrombosis and coagulopathy after perfusion with human blood. The ability to breed pigs with multiple genetic modifications, and to evaluate lung physiology and histology in real-time on an ex vivo rig, represent significant advances toward better understanding the challenges inherent to pulmonary xenotransplantation.
    The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation 08/2013; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Donor passenger leukocytes (PL) from transplanted livers migrate to recipient lymphoid tissues, where they are thought to induce deletion of donor-specific T cells and tolerance. Difficulties in tracking alloreactive T cells and PL in rats and in performing this complex surgery in mice have limited progress in identifying the contribution of PL subsets and sites and kinetics of T cell deletion. Here, we developed a mouse liver transplant model in which PL, recipient cells and a reporter population of transgenic CD8 T cells specific for the graft could be easily distinguished and quantified in allografts and recipient organs by flow cytometry. All PL subsets circulated rapidly via the blood as soon as 1.5 hours post-transplantation. By 24h, PL distributed differently in lymph nodes and spleen while donor NK and NKT cells remained in the liver. Reporter T cells were activated in both liver and lymphoid tissues, but their numbers dramatically decreased within the first 48h. These results provide the first unequivocal demonstration of differential recirculation of liver PL subsets post-transplantation, and show that alloreactive CD8 T cells are deleted more rapidly than initially reported. This model will be useful for dissecting early events leading to spontaneous acceptance of liver transplants. Liver Transpl , 2013. © 2013 AASLD.
    Liver Transplantation 08/2013; · 3.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutaraldehyde fixation does not guarantee complete tissue biocompatibility in current clinical bioprosthetic heart valves (BHVs). Particularly, circulating anti-αGal human antibodies increase significantly from just 10 days after a BHV implantation. The inactivation of such epitope should be mandatory to meet the requirements for a perspectively safe clinical application; nevertheless, its quantitative assessment in commercially available BHVs has never been carried out. In this investigation, seven different models of BHVs were tested. The number of epitopes was determined with reference to a standard αGal source by an ELISA test. The presence of xenoantigen was subsequently confirmed by immunofluorescence analysis. Porcine tissue, knockout for the αGal epitopes, was used as negative control. Epic™ valve was the only model among those tested, in which the αGal antigen appeared to be completely shielded. Composite Trifecta™ valve exhibited conflicting results: cusps of bovine pericardial tissue were devoid of reactive αGal epitopes, while the stent cover strip of porcine pericardium still maintained 30% of active antigens originally present in native tissue. All other tested BHVs express an αGal amount not significantly different from that exhibited by porcine Mosaic(®) valve (5.2 ± 0.6 × 10(10) each 10 mg of tissue). For the first time, the quantitative evaluation of the αGal epitope in heart valve bioprostheses, already in clinical practice for about 40 yrs, was finally determined. Such quantification might provide indications of biocompatibility relevant for the selection of bioprosthetic devices and an increase in the confidence of the patient. It might become a major quality control tool in the production and redirection of future investigation in the quest for αGal-free long-lasting substitutes.
    Xenotransplantation 07/2013; · 1.78 Impact Factor

Publication Stats

2k Citations
545.70 Total Impact Points


  • 1998–2014
    • St. Vincent's Hospital Melbourne
      • Immunology Research Centre
      Melbourne, Victoria, Australia
  • 2013
    • Alfred Hospital
      • Department of Allergy, Immunology & Respiratory Medicine (AIRmed)
      Melbourne, Victoria, Australia
  • 2007–2013
    • Westmead Millennium Institute
      Sydney, New South Wales, Australia
    • The Walter and Eliza Hall Institute of Medical Research
      • Division of Immunology
      Melbourne, Victoria, Australia
  • 2002–2013
    • University of Melbourne
      • • Department of Medicine
      • • Department of Microbiology and Immunology
      Melbourne, Victoria, Australia
    • University of Adelaide
      Tarndarnya, South Australia, Australia
  • 2012
    • The Ohio State University
      • Division of Cardiovascular Medicine
      Columbus, OH, United States
  • 2011
    • Beth Israel Deaconess Medical Center
      • Department of Medicine
      Boston, MA, United States
    • Heidelberg University
      Tiffin, Ohio, United States
  • 1996–2009
    • Saint Vincent Hospital
      Worcester, Massachusetts, United States
  • 2008
    • St. Vincent Health
      Indianapolis, Indiana, United States