Sudip Bhattacharyya

Tata Institute of Fundamental Research, Mumbai, State of Maharashtra, India

Are you Sudip Bhattacharyya?

Claim your profile

Publications (27)126.3 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simultaneous, precise measurements of the mass $M$ and radius $R$ of neutron stars can yield uniquely valuable information about the still uncertain properties of cold matter at several times the density of nuclear matter. One method that could be used to measure $M$ and $R$ is to analyze the energy-dependent waveforms of the X-ray flux oscillations seen during some thermonuclear bursts from some neutron stars. These oscillations are thought to be produced by X-ray emission from hotter regions on the surface of the star that are rotating at or near the spin frequency of the star. Here we explore how well $M$ and $R$ could be determined by generating, and analyzing using Bayesian techniques, synthetic energy-resolved X-ray data that we produce assuming a future space mission having 2--30 keV energy coverage and an effective area of 10 m$^2$, such as the proposed \textit{LOFT} or \textit{AXTAR} missions. We find that if the hot spot is within 10$^\circ$ of the rotation equator, both $M$ and $R$ can usually be determined with an uncertainty of about 10% if there are $10^6$ total counts from the spot, whereas waveforms from spots within 20$^\circ$ of the rotation pole provide no useful constraints. These constraints can usually be achieved even if the burst oscillations vary with time and data from multiple bursts must be used to obtain 10$^6$ counts from the hot spot. This is therefore a promising method to constrain $M$ and $R$ tightly enough to discriminate strongly between competing models of cold, high-density matter.
    The Astrophysical Journal 04/2013; · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accretion disk winds are revealed in Chandra gratings spectra of black holes. The winds are hot and highly ionized (typically composed of He-like and H-like charge states), and show modest blue-shifts. Similar line spectra are sometimes seen in "dipping" low-mass X-ray binaries, which are likely viewed edge-on; however, that absorption is tied to structures in the outer disk, and blue-shifts are not typically observed. Here we report the detection of blue-shifted He-like Fe XXV (3100 +/- 400 km/s) and H-like Fe XXVI (1000 +/- 200 km/s) absorption lines in a Chandra/HETG spectrum of the transient pulsar and low-mass X-ray binary IGR J17480-2446 in Terzan 5. These features indicate a disk wind with at least superficial similarities to those observed in stellar-mass black holes. The wind does not vary strongly with numerous weak X-ray bursts or flares. A broad Fe K emission line is detected in the spectrum, and fits with different line models suggest that the inner accretion disk in this system may be truncated. If the stellar magnetic field truncates the disk, a field strength of B = 0.7-4.0 E+9 Gauss is implied, which is in line with estimates based on X-ray timing techniques. We discuss our findings in the context of accretion flows onto neutron stars and stellar-mass black holes.
    The Astrophysical Journal Letters 01/2011; 731(1). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/ΔE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up," wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.
    The Astrophysical Journal 11/2010; 724(2):1441. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c 2) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk.
    The Astrophysical Journal 08/2010; 720(1):205. · 6.73 Impact Factor
  • 02/2010;
  • Source
    Fotis P. Gavriil, Tod E. Strohmayer, Sudip Bhattacharyya
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT ~ 1.0 keV) plus power-law ($\Gamma$ ~ 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27^+2_-3 eV, from which we determine a column density of 7+/-1x10^17 cm^-2 via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10^3.6 erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that 1A 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes. Comment: 8 pages, 7 figures, submitted to ApJ
    The Astrophysical Journal 09/2009; · 6.73 Impact Factor
  • Source
    Sudip Bhattacharyya, M. Coleman Miller, Duncan K. Galloway
    [Show abstract] [Hide abstract]
    ABSTRACT: Precision measurements of neutron star radii can provide a powerful probe of the properties of cold matter beyond nuclear density. Beginning in the late 1970s it was proposed that the radius could be obtained from the apparent or inferred emitting area during the decay portions of thermonuclear (type I) X-ray bursts. However, this apparent area is generally not constant, preventing reliable measurement of the source radius. Here we report for the first time a correlation between the variation of the inferred area and the burst properties, measured in a sample of almost 900 bursts from 43 sources. We found that the rate of change of the inferred area during decay is anticorrelated with the burst decay duration. A Spearman rank correlation test shows that this relation is significant at the <10^{-45} level for our entire sample, and at the 7x10^{-37} level for the 625 bursts without photospheric radius expansion. This anticorrelation is also highly significant for individual sources exhibiting a wide range of burst durations, such as 4U 1636-536 and Aql X-1. We suggest that variations in the colour factor, which relates the colour temperature resulted from the scattering in the neutron star atmosphere to the effective temperature of the burning layer, may explain the correlation. This in turn implies significant variations in the composition of the atmosphere between bursts with long and short durations. Comment: 8 pages, 4 figures, accepted for publication in MNRAS
    Monthly Notices of the Royal Astronomical Society 08/2009; · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cores of neutron stars harbor the highest matter densities known to occur in nature, up to several times the densities in atomic nuclei. Similarly, magnetic field strengths can exceed the strongest fields generated in terrestrial laboratories by ten orders of magnitude. Hyperon-dominated matter, deconfined quark matter, superfluidity, even superconductivity are predicted in neutron stars. Similarly, quantum electrodynamics predicts that in strong magnetic fields the vacuum becomes birefringent. The properties of matter under such conditions is governed by Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED), and the close study of the properties of neutron stars offers the unique opportunity to test and explore the richness of QCD and QED in a regime that is utterly beyond the reach of terrestrial experiments. Experimentally, this is almost virgin territory.
    05/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using Suzaku observations of three neutron star low-mass X-ray binaries (Ser X–1, 4U 1820–30, and GX 349+2) we have found broad, asymmetric, relativistic Fe K emission lines in all three objects. These Fe K lines can be well fit by a model for lines from a relativistic accretion disk ("diskline"), allowing a measurement of the inner radius of the accretion disk and hence an upper limit on the neutron star radius. These upper limits correspond to 14.5-16.5 km for a 1.4 M☉ neutron star. The inner disk radii that we measure with Fe K lines are in good agreement with the inner disk radii implied by kHz QPOs observed in both 4U 1820–30 and GX 349+2, supporting the inner disk origin for kHz QPOs. In addition, the Fe K lines observed in these neutron stars are narrower than those in the black holes that are thought to be close to maximally spinning, as one would expect if inferences for spin are robust.
    The Astrophysical Journal 12/2008; 674(1):415. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: XEUS has been recently selected by ESA for an assessment study. XEUS is a large mission candidate for the Cosmic Vision program, aiming for a launch date as early as 2018. XEUS is a follow-on to ESA's Cornerstone X-Ray Spectroscopy Mission (XMM-Newton). It will be placed in a halo orbit at L2, by a single Ariane 5 ECA, and comprises two spacecrafts. The Silicon pore optics assembly of XEUS is contained in the mirror spacecraft while the focal plane instruments are contained in the detector spacecraft, which is maintained at the focus of the mirror by formation flying. The main requirements for XEUS are to provide a focused beam of X-rays with an effective aperture of 5 m^2 at 1 keV, 2 m^2 at 7 keV, a spatial resolution better than 5 arcsec, a spectral resolution ranging from 2 to 6 eV in the 0.1-8 keV energy band, a total energy bandpass of 0.1-40 keV, ultra-fast timing, and finally polarimetric capabilities. The High Time Resolution Spectrometer (HTRS) is one of the five focal plane instruments, which comprises also a wide field imager, a hard X-ray imager, a cryogenic spectrometer, and a polarimeter. The HTRS is unique in its ability to cope with extremely high count rates (up to 2 Mcts/s), while providing sub-millisecond time resolution and good (CCD like) energy resolution. In this paper, we focus on the specific scientific objectives to be pursued with the HTRS: they are all centered around the key theme "Matter under extreme conditions" of the Cosmic Vision science program. We demonstrate the potential of the HTRS observations to probe strong gravity and matter at supra-nuclear densities. We conclude this paper by describing the current implementation of the HTRS in the XEUS focal plane. Comment: 10 pages, 10 figures (color), Proceedings of the SPIE meeting, Marseille (2008)
    Proc SPIE 07/2008;
  • Source
    Sudip Bhattacharyya, Tod E. Strohmayer
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron K$\alpha$ emission line from this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC and strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence of a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The red wing of the iron line from Ser X-1 is not as broad as that observed from some black hole systems. This is not unreasonable for a neutron star system, as the accretion disk has to terminate at or before the hard stellar surface. Finally, the inferred source inclination angle in the approximate range 40 degree to 60 degree is consistent with the lack of dips and eclipses from Ser X-1. Comment: 13 pages, 2 tables, 2 figures, published in ApJ Letters
    The Astrophysical Journal 08/2007; · 6.73 Impact Factor
  • Source
    Sudip Bhattacharyya, Tod E. Strohmayer
    [Show abstract] [Hide abstract]
    ABSTRACT: Millisecond period brightness oscillations during the intensity rise of thermonuclear X-ray bursts are likely caused by an azimuthally asymmetric, expanding burning region on the stellar surface. The time evolution of the oscillation amplitude during the intensity rise encodes information on how the thermonuclear flames spread across the stellar surface. This process depends on properties of the accreted burning layer, surface fluid motions, and the surface magnetic field structure, and thus can provide insight into these stellar properties. We present two examples of bursts from different sources that show a decrease in oscillation amplitude during the intensity rise. Using theoretical modeling, we demonstrate that the observed amplitude evolution of these bursts is not well described by a uniformly expanding circular burning region. We further show that by including in our model the salient aspects of the Coriolis force (as described by Spitkovsky, Levin, and Ushomirsky) we can qualitatively reproduce the observed evolution curves. Our modeling shows that the evolutionary structure of burst oscillation amplitude is sensitive to the nature of flame spreading, while the actual amplitude values can be very useful to constrain some source parameters. Comment: 8 pages, 4 figures, accepted for publication in ApJ Letters
    The Astrophysical Journal 08/2007; · 6.73 Impact Factor
  • Source
    Sudip Bhattacharyya, Tod E. Strohmayer
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the finding of an unusual, weak precursor to a thermonuclear X-ray burst from the accreting millisecond pulsar SAX J1808.4-3658. The burst in question was observed on Oct. 19, 2002 with the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA). The precursor began approximately 1 s prior to the onset of a strong radius expansion burst, lasted for about 0.4 s, and exhibited strong oscillations at the 401 Hz spin frequency. Oscillations are not detected in the approximately 0.5 s interval between the precursor and the main burst. The estimated peak photon flux and energy fluence of the precursor are about 1/25, and 1/500 that of the main burst, respectively. From joint spectral and temporal modeling, we find that an expanding burning region with a relatively low temperature on the spinning neutron star surface can explain the oscillations, as well as the faintness of the precursor with respect to the main part of the burst. We dicuss some of the implications of our findings for the ignition and spreading of thermonuclear flames on neutron stars.
    The Astrophysical Journal 09/2006; · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system 1A 1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that 1A 1744-361 shows `atoll' behavior during the outbursts. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity `banana' state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported `dipper QPO' appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from 1A 1744-361.
    The Astrophysical Journal 07/2006; 652(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) of 530 Hz burst oscillations in a thermonuclear (type I) burst from the transient X-ray source A1744-361. This is only the second burst ever observed from this source, and the first to be seen in any detail. Our results confirm that A1744-361 is a low mass X-ray binary (LMXB) system harboring a rapidly rotating neutron star. The oscillations are first detected along the rising edge of the burst, and they show evidence for frequency evolution of a magnitude similar to that seen in other burst sources. The modulation amplitude and its increase with photon energy are also typical of burst oscillations. The lack of any strong indication of photospheric radius expansion during the burst suggests a 9 kpc upper limit of the source distance. We also find energy dependent dips, establishing A1744-361 as a high inclination, dipping LMXB. The timescale between the two episodes of observed dips suggests an orbital period of ~ 97 minutes. We have also detected a 2 - 4 Hz quasi-periodic-oscillation (QPO) for the first time from this source. This QPO appears consistent with ~ 1 Hz QPOs seen from other high-inclination systems. We searched for kilohertz QPOs, and found a suggestive 2.3 sigma feature at 800 Hz in one observation. The frequency, strength, and quality factor are consistent with that of a lower frequency kilohertz QPO, but the relatively low significance argues for caution, so we consider this a tentative detection requiring confirmation. Comment: 8 pages, 4 figures, published in ApJ Letters
    The Astrophysical Journal 07/2006; · 6.73 Impact Factor
  • Source
    Sudip Bhattacharyya
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze archival Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the low mass X-ray binary (LMXB) system XB 1254-690. We calculate colour-colour diagram, hardness-intensity diagram and power spectra of this source, associate its broad low-frequency timing features with the portions of the colour-colour diagram, and establish that XB 1254-690 is an atoll source. This will be important to correlate the timing and spectral features of this dipping LMXB with its various states, which may be useful to understand LMXBs in general. We find the source always in the high intensity banana state, which may explain why ~ 1 Hz "dipper QPOs" have never been observed from XB 1254-690. We also report a suggestive evidence of millisecond period brightness oscillations at the frequency ~ 95 Hz during a thermonuclear X-ray burst for the first time from this source.
    Monthly Notices of the Royal Astronomical Society 06/2006; · 5.52 Impact Factor
  • Source
    Sudip Bhattacharyya, Tod E. Strohmayer
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse archival Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) data of thermonuclear X-ray bursts from the 2002 outburst of the accreting millisecond pulsar SAX J1808.4-3658. We present evidence of nonmonotonic variations of oscillation frequency during burst rise, and correlations among the time evolution of the oscillation frequency, amplitude, and the inferred burning region area. We also discuss that the amplitude and burning region area evolutions are consistent with thermonuclear flame spreading on the neutron star surface. Based on this discussion, we infer that for the 2002 Oct. 15 thermonuclear burst, the ignition likely occured in the mid-latitudes, the burning region took ~ 0.2 s to nearly encircle the equatorial region of the neutron star, and after that the lower amplitude oscillation originated from the remaining asymmetry of the burning front in the same hemisphere where the burst ignited. Our observational findings and theoretical discussion indicate that studies of the evolution of burst oscillation properties during burst rise can provide a powerful tool to understand thermonuclear flame spreading on neutron star surfaces under extreme physical conditions. Comment: 12 pages, 1 table, 2 figures, accepted for publication in ApJ Letters
    The Astrophysical Journal 04/2006; · 6.73 Impact Factor
  • Source
    Sudip Bhattacharyya, Tod E. Strohmayer
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-photospheric-radius-expansion (non-PRE) double-peaked bursts may be explained in terms of spreading (and temporary stalling) of thermonuclear flames on the neutron star surface, as we argued in a previous study of a burst assuming polar ignition. Here we analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of such a burst (but with a considerably different intensity profile from the previous one) from the low mass X-ray binary (LMXB) system 4U 1636-536, and show that this model can qualitatively explain the observed burst profile and spectral evolution, if we assume an off-polar, but high-latitude ignition, and burning front stalling at a higher latitude compared to that for the previous burst. The off-polar ignition can account for the millisecond period brightness oscillations detected from this burst. This is the first time oscillations have been seen from such a burst. Our model can qualitatively explain the oscillation amplitude measured during the first (weaker) peak, and the absence of oscillations during the second peak. The higher latitude front stalling facilitates the first clear detection of a signature of this stalling, which is the primary result of this work, and may be useful for understanding thermonuclear flame spreading on neutron stars. Comment: 11 pages, 3 figures, accepted for publication in ApJ Letters
    The Astrophysical Journal 03/2006; · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss millisecond period brightness oscillations and surface atomic spectral lines observed during type I X-ray bursts from a neutron star in a low mass X-ray binary system. We show that modeling of these phenomena can constrain models of the dense cold matter at the cores of neutron stars. We demonstrate that, even for a broad and asymmetric spectral line, the stellar radius-to-mass ratio can be inferred to better than 5%. We also fit our theoretical models to the burst oscillation data of the low mass X-ray binary XTE J1814-338, and find that the 90% confidence lower limit of the neutron star’s dimensionless radius-to-mass ratio is 4.2.
    Advances in Space Research 01/2006; · 1.18 Impact Factor
  • S. Bhattacharyya, T. Strohmayer
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on a study of the evolution of burst oscillation properties during the rising phase of X-ray bursts from the low mass X-ray binary system 4U 1636-536 observed with the proportional counter array (PCA) on board the Rossi X-Ray Timing Explorer (RXTE). We present evidence for significant harmonic content of burst oscillation pulses during the early rising phases of bursts. This is the first such detection in burst rise oscillations, and is very important for constraining neutron star structure parameters and the equation of state models of matter at the core of a neutron star. The detection of harmonic content only during the initial portions of the burst rise is consistent with the theoretical expectation that with time the thermonuclear burning region becomes larger, and hence the fundamental and harmonic amplitudes both diminish. We also find, for the first time from this source, strong evidence of oscillation frequency increase during the burst rise. The timing behavior of harmonic content, amplitude, and frequency of burst rise oscillations may provide information about the spreading of thermonuclear flames on neutron star surfaces. Such an information is important for understanding neutron star atmospheres during bursts, which involves complex nuclear physics and geophysical fluid dynamics (with significant stellar spin), under conditions of extreme gravity, magnetic field and radiation pressure. This work was supported in part by NASA Guest Investigator grants.
    12/2005;

Publication Stats

291 Citations
126.30 Total Impact Points

Institutions

  • 2008–2010
    • Tata Institute of Fundamental Research
      • Department of Astronomy and Astrophysics
      Mumbai, State of Maharashtra, India
  • 2006
    • University of Illinois, Urbana-Champaign
      Urbana, Illinois, United States
  • 2004–2006
    • University of Maryland, College Park
      • Department of Astronomy
      Maryland, United States