Katerina Semendeferi

University of California, San Diego, San Diego, California, United States

Are you Katerina Semendeferi?

Claim your profile

Publications (33)173.79 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Formalin fixation (FF) is the standard and most common method for preserving postmortem brain tissue. FF stabilizes cellular morphology and tissue architecture, and can be used to study the distinct morphologic and genetic signatures of different cell types. Although the procedure involved in FF degrades messenger RNA over time, an alternative approach is to use small RNAs (sRNA) for genetic analysis associated with cell morphology. Although genetic analysis is carried out on fresh or frozen tissue, there is limited availability or impossibility on targeting specific cell populations, respectively.
    Journal of neuroscience methods. 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasingly, functional and evolutionary research has highlighted the important contribution emotion processing makes to complex human social cognition. As such, it may be asked whether neural structures involved in emotion processing, commonly referred to as limbic structures, have been impacted in human brain evolution. To address this question, we performed an extensive evolutionary analysis of multiple limbic structures using modern phylogenetic tools. For this analysis, we combined new volumetric data for the hominoid (human and ape) amygdala and 4 amygdaloid nuclei, hippocampus, and striatum, collected using stereological methods in complete histological series, with previously published datasets on the amygdala, orbital and medial frontal cortex, and insula, as well as a non-limbic structure, the dorsal frontal cortex, for contrast. We performed a parallel analysis using large published datasets including many anthropoid species (human, ape, and monkey), but fewer hominoids, for the amygdala and 2 amygdaloid subdivisions, hippocampus, schizocortex, striatum, and septal nuclei. To address evolutionary change, we compared observed human values to values predicted from regressions run through (a) non-human hominoids and (b) non-human anthropoids, assessing phylogenetic influence using phylogenetic generalized least squares regression. Compared with other hominoids, the volumes of the hippocampus, the lateral nucleus of the amygdala, and the orbital frontal cortex were, respectively, 50, 37, and 11% greater in humans than predicted for an ape of human hemisphere volume, while the medial and dorsal frontal cortex were, respectively, 26 and 29% significantly smaller. Compared with other anthropoids, only human values for the striatum fell significantly below predicted values. Overall, the data present support for the idea that regions involved in emotion processing are not necessarily conserved or regressive, but may even be enhanced in recent human evolution.
    Frontiers in Human Neuroscience 01/2014; 8:277. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent applications of genomic tools on the analysis of alterations unique to our species coupled with a growing number of neuroanatomical studies across primates provide an unprecedented opportunity to compile different levels of human brain evolution into a complex whole. Applications of induced pluripotent stem cell (iPSC) technology, capable of reprogramming somatic tissue of different species and generating species-specific neuronal phenotypes, for the first time offer an opportunity to test specific evolutionary hypotheses in a field of inquiry that has been long plagued by the limited availability of research specimens. In this review, we will focus specifically on the experimental role of iPSC technology as applied to the analysis of neocortical pyramidal neurons. Pyramidal neurons emerge as particularly suitable for testing evolutionary scenarios, since they form the most common morphological class of neurons in the cortex, display morphological variations across different cortical areas and cortical layers that appear species-specific, and express unique molecular signatures. Human and nonhuman primate iPSC-derived neurons may represent a unique biological resource to elucidate the phenotypic differences between humans and other hominids. As the typical morphology of pyramidal neurons tends to be compromised in neurological disorders, application of iPSC technology to the analysis of pyramidal neurons could not only bring new insights into human adaptation but also offer opportunities to link biomedical research with studies of the origins of the human species.
    Biological psychiatry 09/2013; · 8.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In adult humans, the prefrontal cortex possesses wider minicolumns and more neuropil space than other cortical regions. These aspects of prefrontal cortex architecture, furthermore, are increased in comparison to chimpanzees and other great apes. In order to determine the developmental appearance of this human cortical specialization, we examined the spatial organization of neurons in four cortical regions (frontal pole [Brodmann's area 10], primary motor [area 4], primary somatosensory [area 3b], and prestriate visual cortex [area 18]) in chimpanzees and humans from birth to approximately the time of adolescence (11 years of age). Horizontal spacing distance (HSD) and gray level ratio (GLR) of layer III neurons were measured in Nissl-stained sections. In both human and chimpanzee area 10, HSD was significantly higher in the post-weaning specimens compared to the pre-weaning ones. No significant age-related differences were seen in the other regions in either species. In concert with other recent studies, the current findings suggest that there is a relatively slower maturation of area 10 in both humans and chimpanzees as compared to other cortical regions, and that further refinement of the spatial organization of neurons within this prefrontal area in humans takes place after the post-weaning periods included here. J. Comp. Neurol., 2013. © 2013 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 07/2013; · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body's homeostatic state. We examined the volumes of these cytoarchitectural areas of insular cortex in 30 primate species, including the volume of FI in apes and humans. Results indicate that the whole insula scales hyperallometrically (exponent = 1.13) relative to total brain mass, and the agranular insula (including FI) scales against total brain mass with even greater positive allometry (exponent = 1.23), providing a potential neural basis for enhancement of social cognition in association with increased brain size. The relative volumes of the subdivisions of the insular cortex, after controlling for total brain volume, are not correlated with species typical social group size. Although its size is predicted by primate-wide allometric scaling patterns, we found that the absolute volume of the left and right agranular insula and left FI are among the most differentially expanded of the human cerebral cortex compared to our closest living relative, the chimpanzee.
    Journal of Human Evolution 02/2013; · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroanatomical, molecular, and paleontological evidence is examined in light of human brain evolution. The brain of extant humans differs from the brains of other primates in its overall size and organization, and differences in size and organization of specific cortical areas and subcortical structures implicated into complex cognition and social and emotional processing. The human brain is also characterized by functional lateralizations, reflecting specializations of the cerebral hemispheres in humans for different types of processing, facilitating fast and reliable communication between neural cells in an enlarged brain. The features observed in the adult brain reflect human-specific patterns of brain development. Compared to the brains of other primates, the human brain takes longer to mature, promoting an extended period for establishing cortical microcircuitry and its modifications. Together, these features may underlie the prolonged period of learning and acquisition of technical and social skills necessary for survival, creating a unique cognitive and behavioral niche typical of our species. The neuroanatomical findings are in concordance with molecular analyses, which suggest a trend toward heterochrony in the expression of genes implicated in different functions. These include synaptogenesis, neuronal maturation, and plasticity in humans, mutations in genes implicated in neurite outgrowth and plasticity, and an increased role of regulatory mechanisms, potentially promoting fast modification of neuronal morphologies in response to new computational demands. At the same time, endocranial casts of fossil hominins provide an insight into the timing of the emergence of uniquely human features in the course of evolution. We conclude by proposing several ways of combining comparative neuroanatomy, molecular biology and insights gained from fossil endocasts in future research.
    Frontiers in Human Neuroscience 01/2013; 7:707. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primate cerebral cortex is characterized by regional variation in the structure of pyramidal neurons, with more complex dendritic arbors and greater spine density observed in prefrontal compared with sensory and motor cortices. Although there are several investigations in humans and other primates, virtually nothing is known about regional variation in the morphology of pyramidal neurons in the cerebral cortex of great apes, humans' closest living relatives. The current study uses the rapid Golgi stain to quantify the dendritic structure of layer III pyramidal neurons in 4 areas of the chimpanzee cerebral cortex: Primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortex. Consistent with previous studies in humans and macaque monkeys, pyramidal neurons in the prefrontal cortex of chimpanzees exhibit greater dendritic complexity than those in other cortical regions, suggesting that prefrontal cortical evolution in primates is characterized by increased potential for integrative connectivity. Compared with chimpanzees, the pyramidal neurons of humans had significantly longer and more branched dendritic arbors in all cortical regions.
    Cerebral Cortex 08/2012; · 6.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In human and nonhuman primates, the amygdala is known to play critical roles in emotional and social behavior. Anatomically, individual amygdaloid nuclei are connected with many neural systems that are either differentially expanded or conserved over the course of primate evolution. To address amygdala evolution in humans and our closest living relatives, the apes, we used design-based stereological methods to obtain neuron counts for the amygdala and each of four major amygdaloid nuclei (the lateral, basal, accessory basal, and central nuclei) in humans, all great ape species, lesser apes, and one monkey species. Our goal was to determine whether there were significant differences in the number or percent of neurons distributed to individual nuclei among species. Additionally, regression analyses were performed on independent contrast data to determine whether any individual species deviated from allometric trends. There were two major findings. In humans, the lateral nucleus contained the highest number of neurons in the amygdala, whereas in apes the basal nucleus contained the highest number of neurons. Additionally, the human lateral nucleus contained 59% more neurons than predicted by allometric regressions on nonhuman primate data. Based on the largest sample ever analyzed in a comparative study of the hominoid amygdala, our findings suggest that an emphasis on the lateral nucleus is the main characteristic of amygdala specialization over the course of human evolution.
    The Journal of Comparative Neurology 04/2012; 520(13):3035-54. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microglial activation and alterations in neuron number have been reported in autism. However, it is unknown whether microglial activation in the disorder includes a neuron-directed microglial response that might reflect neuronal dysfunction, or instead indicates a non-directed, pro-activation brain environment. To address this question, we examined microglial and neuronal organization in the dorsolateral prefrontal cortex, a region of pronounced early brain overgrowth in autism, via spatial pattern analysis of 13 male postmortem autism subjects and 9 controls. We report that microglia are more frequently present near neurons in the autism cases at a distance interval of 25 μm, as well as 75 and 100 μm. Many interactions are observed between near-distance microglia and neurons that appear to involve encirclement of the neurons by microglial processes. Analysis of a young subject subgroup preliminarily suggests that this alteration may be present from an early age in autism. We additionally observed that neuron-neuron clustering, although normal in cases with autism as a whole, increases with advancing age in autism, suggesting a gradual loss of normal neuronal organization in the disorder. Microglia-microglia organization is normal in autism at all ages, indicating that aberrantly close microglia-neuron association in the disorder is not a result of altered microglial distribution. Our findings confirm that at least some microglial activation in the dorsolateral prefrontal cortex in autism is associated with a neuron-specific reaction, and suggest that neuronal organization may degrade later in life in the disorder.
    Brain research 03/2012; 1456:72-81. · 2.46 Impact Factor
  • Kate Teffer, Katerina Semendeferi
    [Show abstract] [Hide abstract]
    ABSTRACT: The prefrontal cortex is critical to many cognitive abilities that are considered particularly human, and forms a large part of a neural system crucial for normal socio-emotional and executive functioning in humans and other primates. In this chapter, we survey the literature regarding prefrontal development and pathology in humans as well as comparative studies of the region in humans and closely related primate species. The prefrontal cortex matures later in development than more caudal regions, and some of its neuronal subpopulations exhibit more complex dendritic arborizations. Comparative work suggests that the human prefrontal cortex differs from that of closely related primate species less in relative size than it does in organization. Specific reorganizational events in neural circuitry may have taken place either as a consequence of adjusting to increases in size or as adaptive responses to specific selection pressures. Living in complex environments has been recognized as a considerable factor in the evolution of primate cognition. Normal frontal lobe development and function are also compromised in several neurological and psychiatric disorders. A phylogenetically recent reorganization of frontal cortical circuitry may have been critical to the emergence of human-specific executive and social-emotional functions, and developmental pathology in these same systems underlies many psychiatric and neurological disorders, including autism and schizophrenia.
    Progress in brain research 01/2012; 195:191-218. · 4.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism often involves early brain overgrowth, including the prefrontal cortex (PFC). Although prefrontal abnormality has been theorized to underlie some autistic symptoms, the cellular defects that cause abnormal overgrowth remain unknown. To investigate whether early brain overgrowth in children with autism involves excess neuron numbers in the PFC. DESIGN, SETTING, AND CASES: Postmortem prefrontal tissue from 7 autistic and 6 control male children aged 2 to 16 years was examined by expert anatomists who were blinded to diagnostic status. Number and size of neurons were quantified using stereological methods within the dorsolateral (DL-PFC) and mesial (M-PFC) subdivisions of the PFC. Cases were from the eastern and southeastern United States and died between 2000 and 2006. Mean neuron number and size in the DL-PFC and M-PFC were compared between autistic and control postmortem cases. Correlations of neuron number with deviation in brain weight from normative values for age were also performed. Children with autism had 67% more neurons in the PFC (mean, 1.94 billion; 95% CI, 1.57-2.31) compared with control children (1.16 billion; 95% CI, 0.90-1.42; P = .002), including 79% more in DL-PFC (1.57 billion; 95% CI, 1.20-1.94 in autism cases vs 0.88 billion; 95% CI, 0.66-1.10 in controls; P = .003) and 29% more in M-PFC (0.36 billion; 95% CI, 0.33-0.40 in autism cases vs 0.28 billion; 95% CI, 0.23-0.34 in controls; P = .009). Brain weight in the autistic cases differed from normative mean weight for age by a mean of 17.6% (95% CI, 10.2%-25.0%; P = .001), while brains in controls differed by a mean of 0.2% (95% CI, -8.7% to 9.1%; P = .96). Plots of counts by weight showed autistic children had both greater total prefrontal neuron counts and brain weight for age than control children. In this small preliminary study, brain overgrowth in males with autism involved an abnormal excess number of neurons in the PFC.
    JAMA The Journal of the American Medical Association 11/2011; 306(18):2001-10. · 29.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The von Economo neurons (VENs) are large bipolar neurons located in the frontoinsular cortex (FI) and limbic anterior (LA) area in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week postconception, with numbers increasing during the first 8 months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of frontotemporal dementia (FTD) implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging.
    Annals of the New York Academy of Sciences 04/2011; 1225(1):59 - 71. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Few morphological differences have been identified so far that distinguish the human brain from the brains of our closest relatives, the apes. Comparative analyses of the spatial organization of cortical neurons, including minicolumns, can aid our understanding of the functionally relevant aspects of microcircuitry. We measured horizontal spacing distance and gray-level ratio in layer III of 4 regions of human and ape cortex in all 6 living hominoid species: frontal pole (Brodmann area [BA] 10), and primary motor (BA 4), primary somatosensory (BA 3), and primary visual cortex (BA 17). Our results identified significant differences between humans and apes in the frontal pole (BA 10). Within the human brain, there were also significant differences between the frontal pole and 2 of the 3 regions studied (BA 3 and BA 17). Differences between BA 10 and BA 4 were present but did not reach significance. These findings in combination with earlier findings on BA 44 and BA 45 suggest that human brain evolution was likely characterized by an increase in the number and width of minicolumns and the space available for interconnectivity between neurons in the frontal lobe, especially the prefrontal cortex.
    Cerebral Cortex 11/2010; 21(7):1485-97. · 6.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the neurodevelopmental disorder autism, several neuroimmune abnormalities have been reported. However, it is unknown whether microglial somal volume or density are altered in the cortex and whether any alteration is associated with age or other potential covariates. Microglia in sections from the dorsolateral prefrontal cortex of nonmacrencephalic male cases with autism (n = 13) and control cases (n = 9) were visualized via ionized calcium binding adapter molecule 1 immunohistochemistry. In addition to a neuropathological assessment, microglial cell density was stereologically estimated via optical fractionator and average somal volume was quantified via isotropic nucleator. Microglia appeared markedly activated in 5 of 13 cases with autism, including 2 of 3 under age 6, and marginally activated in an additional 4 of 13 cases. Morphological alterations included somal enlargement, process retraction and thickening, and extension of filopodia from processes. Average microglial somal volume was significantly increased in white matter (p = .013), with a trend in gray matter (p = .098). Microglial cell density was increased in gray matter (p = .002). Seizure history did not influence any activation measure. The activation profile described represents a neuropathological alteration in a sizeable fraction of cases with autism. Given its early presence, microglial activation may play a central role in the pathogenesis of autism in a substantial proportion of patients. Alternatively, activation may represent a response of the innate neuroimmune system to synaptic, neuronal, or neuronal network disturbances, or reflect genetic and/or environmental abnormalities impacting multiple cellular populations.
    Biological psychiatry 08/2010; 68(4):368-76. · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology.
    Brain Structure and Function 06/2010; 214(5-6):495-517. · 7.84 Impact Factor
  • Katerina Semendeferi, Nicole Barger, Natalie Schenker
    01/2010: pages 119-157;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The amygdaloid complex (AC), a key component of the limbic system, is a brain region critical for the detection and interpretation of emotionally salient information. Therefore, changes in its structure and function are likely to provide correlates of mood and emotion disorders, diseases that afflict a large portion of the human population. Previous gross comparisons of the AC in control and diseased individuals have, however, mainly failed to discover these expected correlations with diseases. We have characterized AC nuclei in different nonhuman primate species to establish a baseline for more refined comparisons between the normal and the diseased amygdala. AC nuclei volume and neuron number in 19 subdivisions are reported from 13 Old and New World primate brains, spanning five primate species, and compared with corresponding data from humans. Analysis of the four largest AC nuclei revealed that volume and neuron number of one component, the central nucleus, has a negative allometric relationship with total amygdala volume and neuron number, which is in contrast with the isometric relationship found in the other AC nuclei (for both neuron number and volume). Neuron density decreases across all four nuclei according to a single power law with an exponent of about minus one-half. Because we have included quantitative comparisons with great apes and humans, our conclusions apply to human brains, and our scaling laws can potentially be used to study the anatomical correlates of the amygdala in disorders involving pathological emotion processing.
    The Journal of Comparative Neurology 11/2009; 518(8):1176-98. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Broca's area was identified in the inferior frontal gyrus of chimpanzee, bonobo, gorilla, and orangutan brains through direct cytoarchitectonic comparison with human brains. Across species, Broca's area comprises Brodmann's areas 44 and 45. We found that these areas exhibited similar cytoarchitectonic characteristics in all species examined. We analyzed the minicolumnar organization of cells in layer III of Broca's area in 11 human and 9 great ape specimens. A semiautomated method was used to analyze digitized images of histological sections stained for Nissl substance. Horizontal spacing distance and gray level index (GLI; or the area fraction occupied by cells) were quantified in all images. In contrast to area Tpt, the only cortical area for which comparative minicolumnar data have been published previously for humans and one of the great apes, we found no population-level asymmetry, for either horizontal spacing distance or GLI. Only human females exhibited a leftward asymmetry in GLI. GLI was lower in humans than in great apes (P < 0.001), allowing more space for connectivity in layer III. In humans, horizontal spacing distance was greater than in great apes but smaller relative to brain size.
    The Journal of Comparative Neurology 09/2008; 510(1):117-28. · 3.66 Impact Factor
  • Source
    Nicole Barger, Lisa Stefanacci, Katerina Semendeferi
    [Show abstract] [Hide abstract]
    ABSTRACT: The amygdaloid complex functions to facilitate effective appraisal of the social environment and is an essential component of the neural systems subserving social behavior. Despite its critical role in mediating social interaction, the amygdaloid complex has not attracted the same attention as the isocortex in most evolutionary analyses. We performed a comparative analysis of the amygdaloid complex in the hominoids to address the lack of comparative information available for this structure in the hominoid brain. We demarcated the amygdaloid complex and the three nuclei constituting its basolateral division, the lateral, basal, and accessory basal nuclei, in 12 histological series representing all six hominoid species. The volumes obtained for these areas were subjected to allometric analyses to determine whether any species deviated from expected values based on the other hominoids. Differences between groups were addressed using nonparametric comparisons of means. The human lateral nucleus was larger than predicted for an ape of human brain size and occupied the majority of the basolateral division, whereas the basal nucleus was the largest of the basolateral nuclei in all ape species. In orangutans the amygdala and basolateral division were smaller than in the African apes. While the gorilla had a smaller than predicted lateral nucleus, its basal and accessory basal nuclei were larger than predicted. These differences may reflect volumetric changes occurring in interconnected cortical areas, specifically the temporal lobe and orbitofrontal cortex, which also subserve social behavior and cognition, suggesting that this system may be acted upon in hominoid and hominid evolution.
    American Journal of Physical Anthropology 12/2007; 134(3):392-403. · 2.48 Impact Factor
  • Source
    Daniel P Kennedy, Katerina Semendeferi, Eric Courchesne
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that spindle neurons, an evolutionarily unique type of neuron, might be involved in higher-order social, emotional, and cognitive functions. As such, it was hypothesized that these neurons may be particularly important to the pathophysiology of autism, a disease characterized in part by disruption of higher-order social and emotional processing. Therefore, we conducted the first stereological investigation of the number of spindle neurons in autism, using the optical fractionator technique. Our results did not provide evidence of a reduction in spindle neuron number in frontoinsular cortex in autism. However, this study provides the first quantitative stereological data on spindle neuron number in autism. Future postmortem studies with larger sample sizes will likely be critical in elucidating the spared and defective neural systems underlying the autistic phenotype.
    Brain and Cognition 08/2007; 64(2):124-9. · 2.82 Impact Factor

Publication Stats

1k Citations
173.79 Total Impact Points

Institutions

  • 1998–2014
    • University of California, San Diego
      • Department of Anthropology
      San Diego, California, United States
  • 2010–2011
    • California Institute of Technology
      • Division of Biology
      Pasadena, CA, United States
  • 2007
    • Naval Medical Center San Diego
      San Diego, California, United States
  • 2004
    • Columbia University
      • Department of Anthropology
      New York City, NY, United States
  • 1997
    • University of Iowa
      • Department of Neurology
      Iowa City, IA, United States