Alexander Biela

RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany

Are you Alexander Biela?

Claim your profile

Publications (3)9.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.
    Journal of Biological Chemistry 04/2004; 279(13):13140-7. · 4.65 Impact Factor
  • Source
    Nico Melzer, Alexander Biela, Christoph Fahlke
    [Show abstract] [Hide abstract]
    ABSTRACT: Excitatory amino acid transporters (EAATs) mediate two distinct transport processes, a stoichiometrically coupled transport of glutamate, Na+, K+, and H+, and a pore-mediated anion conductance. We studied the anion conductance associated with two mammalian EAAT isoforms, hEAAT2 and rEAAT4, using whole-cell patch clamp recording on transfected mammalian cells. Both isoforms exhibited constitutively active, multiply occupied anion pores that were functionally modified by various steps of the Glu/Na+/H+/K+ transport cycle. Permeability and conductivity ratios were distinct for cells dialyzed with Na(+)- or K(+)-based internal solution, and application of external glutamate altered anion permeability ratios and the concentration dependence of the anion influx. EAAT4 but not EAAT2 anion channels displayed voltage-dependent gating that was modified by glutamate. These results are incompatible with the notion that glutamate only increases the open probability of the anion pore associated with glutamate transporters and demonstrate unique gating mechanisms of EAAT-associated anion channels.
    Journal of Biological Chemistry 01/2004; 278(50):50112-9. · 4.65 Impact Factor
  • Nico Melzer, Alexander Biela, Christoph Fahlke
    Journal of Biological Chemistry. 09/2003;