Houqi Liu

Second Military Medical University, Shanghai, Shanghai, Shanghai Shi, China

Are you Houqi Liu?

Claim your profile

Publications (22)89.61 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Experiments with 5'-azacytidine and hematopoietic growth factor approved for the transformation of human mesenchymal cells into hematopoietic cells have demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cells. Here, we demonstrate that umbilical cord-derived human mesenchymal stem cells (uMSC) are easily accessible and could be induced into cells with hematopoietic function. Furthermore, we focused on the crucial miRNAs and relative transcription factors (TFs) in our study. We show that combined Aza/GF incubation can increase expression of miR-218, miR-150, and miR-451. Accordingly, miR-218 overexpression achieved an increase in expression of CD34 (3-13 %), CD45 (50-65 %), CD133 and c-Kit in uMSCs that cultured with Aza/GF. The expression of the relevant transcriptional factors, such as HoxB4 and NF-Ya, was higher than in the negative control group or miR-218 inhibitor transfected group, and microphthalmia-associated transcription factor (MITF) is regarded to be a direct target of miR-218, as demonstrated by luciferase assays. Overexpression of miR-218 might, in conjunction with the MITF, upregulate the expression of NF-Ya and HoxB4, which induce a hematopoietic state. We concluded that miR-218 might have a role in the transformation of hematopoietic cells through the MITF pathway.
    Molecular Biology Reports 04/2014; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The junctional adhesion molecule A (JAM-A) has been shown to serve a crucial role in the proliferation, differentiation, and tube-like formation of epithelial cells during angiogenesis. The role of JAM-A in hair follicle (HF) regeneration has not yet been reported. In this study, we used human JAM-A-modified human mesenchymal stem cells (MSCs) to repair HF abnormalities in BALB/c nu/nu mice. The JAM-A gene and JAM-A short hairpin RNA were transfected into cultured human MSCs to generate the JAM-A overexpression MSCs (JAM-A(ov) MSCs) and JAM-A knockdown MSCs (JAM-A(kd) MSCs), respectively. These cells were injected intradermally into the skin of nude mice during the first telogen phase of the HF that occurs 21 days postnatally. We found that JAM-A(ov) MSCs migrated into the HF sheath and remodeled HF structure effectively. The HF abnormalities such as HF curve and HF zigzag were remodeled, and hair formation was improved 7 days following injection in both the JAM-A(ov) MSC and MSC groups, compared with the JAM-A(kd) MSC group or negative control group. Furthermore, the JAM-A(ov) MSC group showed enhanced hair formation in contrast to the MSC group, and the number of curved and zigzagged HFs was reduced by 80% (p < .05). These results indicated that JAM-A(ov) MSCs improved hair formation in nude mice through HF structure remodeling.
    STEM CELLS TRANSLATIONAL MEDICINE 02/2014; · 3.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The distal cytoplasmic motifs of the leukemia inhibitory factor receptor α-chain (LIFRα-CT3) and its TAT fusion protein (TAT-CT3) can independently suppress cell viability and induce myeloid differentiation in human leukemia HL-60 cells in our previous studies. But its underlying mechanism remains undefined. Herein, we show that a prokaryotic expressed TAT-CT3 induced a rapid elevation of STAT3 phosphorylation (pSTAT3), and then suppress the transcription of miR-155 and induce the elevation of SOCS-1, which further inhibited STAT3 phosphorylation for a long-term period. Our result indicated a novel mechanism of TAT-CT3 to promote HL60 cells differentiation, which provides some potential therapeutic targets for future acute myelogenous leukemia therapy.
    Leukemia Research. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is a central mechanism for wound healing, tissue repair, organ fibrosis and carcinoma progression in adults. Evidence shows that both epidermal growth factor (EGF) and transforming growth factor-β1 (TGF-β1) are upregulated during renal interstitial fibrosis, and that co-stimulation of EGF and TGF-β1 could induce renal tubular epithelial cells to undergo EMT more effectively than EGF or TGF-β1 alone. This study was intended to explore the molecular mechanism underlying this effect. HK-2 cells underwent apparent EMT with increased cell motility after co-stimulation of EGF and TGF-β1 as compared with TGF-β1 or EGF alone. Co-stimulation of EGF and TGF-β1 resulted in rapid and robust ERK1/2 activation and induced persistent high expression of Snail protein. Treatment with the MEK inhibitor U0126 followed by co-stimulation with EGF and TGF-β1 prevented the upregulation of Snail protein, EMT and motility, without impairing Snail mRNA. TGF-β1 induced Snail at the transcriptional level, which was not influenced by EGF. Inhibition of Snail expression by siRNA interference also prevented EMT caused by co-stimulation of EGF and TGF-β1. These data suggest that EGF promotes TGF-β1-induced EMT through a synergistic effect on Snail at the post-transcriptional level in HK-2 cells.
    Molecular Biology Reports 11/2013; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to isolate aged human bone marrow multipotent stem cells (hAMSCs) with the potential for multilineage differentiation and to directly induce the cells to generate dopamine neurons, which could be used for Parkinson's disease therapy. We compared different culture methods for stem cells from aged human bone marrow and identified hAMSCs that could proliferate in vitro for at least 60 doubling times. Using RT-PCR and IHC, we found that these hAMSCs expressed pluripotent genes, such as Oct4, Sox2, and Nanog. In vitro studies also proved that hAMSCs could differentiate into three germ layer-derived cell types, such as osteogenic, chondrogenic, adipogenic, and hepatocyte-liked cells. After induction for more than 20 d in vitro with retinoic acid, basic fibroblast growth factor, and sonic hedgehog using a two-step method and withdrawal of serum, hAMSCs could differentiate into dopamine neurons at the positive ratio of 70%, which showed DA secretion function upon depolarization. In conclusion, we suggest that hAMSCs can be used as cell sources to develop medical treatments to prevent the progression of Parkinson's disease, especially in aged persons.
    In Vitro Cellular & Developmental Biology - Animal 10/2013; · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The embryonic stem cell (ESC) transcriptional and epigenetic networks are controlled by a multilayer regulatory circuitry, including core transcription factors (TFs), posttranscriptional modifier microRNAs (miRNAs), and some other regulators. However, the role of large intergenic noncoding RNAs (lincRNAs) in this regulatory circuitry and their underlying mechanism remains undefined. Here, we demonstrate that a lincRNA, linc-RoR, may function as a key competing endogenous RNA to link the network of miRNAs and core TFs, e.g., Oct4, Sox2, and Nanog. We show that linc-RoR shares miRNA-response elements with these core TFs and that linc-RoR prevents these core TFs from miRNA-mediated suppression in self-renewing human ESC. We suggest that linc-RoR forms a feedback loop with core TFs and miRNAs to regulate ESC maintenance and differentiation. These results may provide insights into the functional interactions of the components of genetic networks during development and may lead to new therapies for many diseases.
    Developmental Cell 03/2013; · 12.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblasts can be reprogrammed to induced pluripotent stem cells (iPSCs) by application of transcription factors octamer-binding protein 4 (Oct4), SRY-box containing gene 2 (Sox2), Kruppel-like factor 4 (Klf4), and c-Myelocytomatosis oncogene (c-Myc) (OSKM), but the underlying mechanisms remain unclear. Here, we report that exogenous Oct4 and Sox2 can bind at the promoter regions of mir-141/200c and mir-200a/b/429 cluster, respectively, and induce the transcription activation of miR-200 family during the OSKM-induced reprogramming. Functional suppression of miR-200s with specific inhibitors significantly represses the OSKM-caused mesenchymal-to-epithelial transition (MET, an early event in reprogramming of fibroblasts to iPSCs) and iPSC generation, whereas overexpression of miR-200s promotes the MET and iPSC generation. Mechanistic studies showed that miR-200s significantly repress the expression of zinc finger E-box binding homeobox 2 (ZEB2) through directly targeting its 3' UTR and direct inhibition of ZEB2 can mimic the effects of miR-200s on iPSC generation and MET process. Moreover, the effects of miR-200s during iPSC generation can be blocked by ZEB2 overexpression. Collectively, our findings not only reveal that members of the miR-200 family are unique mediators of the reprogramming factors Oct4/Sox2, but also demonstrate that the miR-200/ZEB2 pathway as one critical mechanism of Oct4/Sox2 to induce somatic cell reprogramming at the early stage.
    Proceedings of the National Academy of Sciences 02/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Stem cell therapy is a promising for the treatment for cerebral palsy, which refers to a category of brain diseases that are associated with chronic motor disability in children. Autologous MSCs may be a better cell source and have been studied for the treatment of cerebral palsy because of their functions in tissue repair and the regulation of immunological processes. METHODS: To assess neural stem cell--like (NSC-like) cells derived from autologous marrow mesenchymal stem cells as a novel treatment for patients with moderate-to-severe cerebral palsy, a total of 60 cerebral palsy patients were enrolled in this open-label, non-randomised, observer-blinded controlled clinical study with a 6-months follow-up. For the transplantation group, a total of 30 cerebral palsy patients received an autologous NSC-like cells transplantation (1-2x107 cells into the subarachnoid cavity) and rehabilitation treatments whereas 30 patients in the control group only received rehabilitation treatment. RESULTS: We recorded the gross motor function measurement scores, language quotients, and adverse events up to 6 months post-treatment. The gross motor function measurement scores in the transplantation group were significantly higher at at month 3 (the score increase was 42.6, 95% CI: 9.8-75.3, P=.011) and month 6 (the score increase was 58.6, 95% CI: 25.8-91.4, P=.001) post-treatment compared with the baseline scores.. The increase in the Gross Motor Function Measurement scores in the control group was not significant. The increases in the language quotients at months 1, 3, and 6 post-treatment were not statistically significant when compared with the baseline quotients in both groups.. All the 60 patients survived, and none of the patients experienced serious adverse events or complications. CONCLUSION: Our results indicated that NSC-like cells are safe and effective for the treatment of motor deficits related to cerebral palsy. Further randomised clinical trials are necessary to establish the efficacy of this procedure.
    Journal of Translational Medicine 01/2013; 11(1):21. · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1), has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs) in previous studies. However, the role of CARM1 in human embryonic stem cells (hESCs) and the regulatory mechanism that controls CARM1 expression during ESCs differentiation are presently unknown. Here, we demonstrate that CARM1 plays an active role in the resistance to differentiation in hESCs by regulating pluripotency genes in response to BMP4. In a functional screen, we identified the miR-181 family as a regulator of CARM1 that is induced during ESC differentiation and show that endogenous miR-181c represses the expression of CARM1. Depletion of CARM1 or enforced expression of miR-181c inhibits the expression of pluripotency genes and induces differentiation independent of BMP4, whereas overexpression of CARM1 or miR-181c inhibitor elevates Nanog and impedes differentiation. Furthermore, expression of CARM1 rescue constructs inhibits the effect of miR-181c overexpression in promoting differentiation. Taken together, our findings demonstrate the importance of a miR-181c-CARM1 pathway in regulating the differentiation of hESCs.
    PLoS ONE 01/2013; 8(1):e53146. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs) by the application of Yamanaka factors (OSKM), but the mechanisms underlying this reprogramming remain poorly understood. Here, we report that Sox2 directly regulates endogenous microRNA-29b (miR-29b) expression during iPSC generation and that miR-29b expression is required for OSKM- and OSK-mediated reprogramming. Mechanistic studies show that Dnmt3a and Dnmt3b are in vivo targets of miR-29b and that Dnmt3a and Dnmt3b expression is inversely correlated with miR-29b expression during reprogramming. Moreover, the effect of miR-29b on reprogramming can be blocked by Dnmt3a or Dnmt3b overexpression. Further experiments indicate that miR-29b-DNMT signaling is significantly involved in the regulation of DNA methylation-related reprogramming events, such as mesenchymal-to-epithelial transition (MET) and Dlk1-Dio3 region transcription. Thus, our studies not only reveal that miR-29b is a novel mediator of reprogramming factor Sox2 but also provide evidence for a multistep mechanism in which Sox2 drives a miR-29b-DNMT signaling axis that regulates DNA methylation-related events during reprogramming.Cell Research advance online publication 25 December 2012; doi:10.1038/cr.2012.180.
    Cell Research 12/2012; · 10.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia inhibitory factor (LIF) affects multiple types of leukemia cells in vitro through its functional receptor LIFR, which comprises a complex of the LIFR α-chain (LIFRα) and gp130. Researchers have recently observed that the C-terminus of the LIFRα cytoplasmic domain contains as many conserved YXXQ motifs as gp130 (C-terminal triple YXXQ motifs, LIFRα-CT3), whose free structure has been shown to be capable of activating STAT3 phosphorylation in the cytoplasm and consequently activating STAT3-related downstream molecules in the nucleus. This process can induce pathological acute myeloid leukemia (AML) or acute promyeloid leukemia (APL) cells to differentiate into mature granulocytes, simulating the LIF-related differential cascade. This process reduces or inhibits the side effects caused by toxic all-trans retinoid acid (ATRA), which has long been used as a fundamental medication for treating AML/APL in clinical practice despite its related high relapse rate. Therefore, we believe that it is possible to maximize the beneficial effects of LIF by enriching LIFRα-CT3 in AML/APL cell cytoplasm. The aims of this work were to enrich LIFRα-specific motifs in leukemia cells using molecular biological methods and evaluate the use of membrane-permeable polypeptides as a novel possible AML/APL therapy in combination with or independent of ATRA-based chemotherapy.
    Medical Hypotheses 10/2012; · 1.18 Impact Factor
  • Zhenyu Xu, Yue Wang, Houqi Liu
    Hepatology 07/2012; · 12.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem (iPS) cells, especially those reprogrammed from patient somatic cells, have a great potential usage in regenerative medicine. The expression of p53 has been proven as a key barrier limiting iPS cell generation, but how p53 is regulated during cell reprogramming remains unclear. In this study, we found that the ectopic expression of miR-138 significantly improved the efficiency of iPS cell generation via Oct4, Sox2, and Klf4, with or without c-Myc (named as OSKM or OSK, respectively), without sacrificing the pluripotent characteristics of the generated iPS cells. Exploration of the mechanism showed that miR-138 directly targeted the 3' untranslated region (UTR) of p53, significantly decreasing the expression of p53 and its downstream genes. Furthermore, the ectopic expression of p53 having a mutant 3'-UTR, which cannot be bound by miR-138, seriously impaired the effect of miR-138 on p53 signaling and OSKM-initiated somatic cell reprogramming. Combined with the fact that miR-138 is endogenously expressed in fibroblasts, iPS cells, and embryonic stem cells, our study demonstrated that regulation of the p53 signaling pathway and promotion of iPS cell generation represent an unrevealed important function of miR-138.
    Stem Cells 06/2012; 30(8):1645-54. · 7.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DP (dermal papilla) is a mesenchyme-derived structure situated at the base of the HF (hair follicle) that plays an important role in embryonic hair morphogenesis and maintenance of the hair growth cycle. hMSCs (human mesenchymal stem cells) have gained widespread attention in the field of tissue engineering, but not much is known about the differentiation of hMSCs into DP cells. hMSCs involved in HF formation were examined in our previous study. Here, we have explored the differentiation potential of hMSCs into DP cells by co-culturing hMSCs with DP cells, which proved to be the case. During the differentiation process, the expression of versican, CD133, SCF (stem cell factor), ET-1 (endothelin-1) and bFGF (basic fibroblast growth factor) increased. Compared with hMSCs alone, the aggregate number clearly increased when co-cultured with DP cells. The expression in vivo of HLA-I (human leucocyte antigen class I) was confined to DP of the newly formed HF. The data suggest that hMSCs possess the potential to differentiate into DP cells in vivo and in vitro.
    Cell biology international reports. 01/2012; 19(2):e00019.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The leukemia inhibitory factor (LIF) affects multiple types of leukemia cells in vitro through the functional LIF receptor (LIFR), which comprises a complex of the LIFR α-chain (LIFR α) and gp130. As Jak2/STAT3 has been proven to be a significant mediator in the LIF-induced differentiation of promyeloid leukemia cells, we constructed a recombinant vector, pcDNA3.0-CT3 (containing the structurally conserved triple YXXQ motifs of LIFR α, termed LIFR α-CT3), and its specific tyrosine-mutated counterpart, pcDNA3.0-MUT, to determine the sites and examine the corresponding mechanisms involved in STAT3 phosphorylation. We found that the triple YXXQ motifs of LIFR α-CT3 are capable of up-regulating phosphorylated levels of STAT3 in a Jak2-independent manner prior to the induction of myeloid differentiation by LIFR α-CT3 in the human promyeloid cell line HL-60. By specifically blocking Jak2 using the AG-490 inhibitor, we observed that the LIFR α-CT3 group of HL-60 cells still demonstrated up-regulation of phosphorylated STAT3 and this up-regulation could result in the myeloid differentiation of HL-60 cells. These results may shed light on acute promyeloid leukemia therapy in future clinical practice.
    Oncology Reports 08/2011; 26(2):399-404. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The embryonic microenvironment is known to suppress the tumorigenic phenotype of aggressive cancer cells; however, the effects of tumorigenic microenvironments on stem cells have not been sufficiently explored due to the lack of suitable model systems. In order to study the tumorigenic microenviornment, we developed a novel in vitro model system for induction of malignant transformation of human epithelial-like stem cells (hEpSCs), involving co-cultivation and close contact of hEpSCs with the A375 melanoma cell line, together with mutagen treatment of hEpSCs with dimethylbenzanthracene (DMBA). Both factors (close contact and mutagen treatment) were required to transform hEpSCs in vitro and cause phenotypic changes characteristic of epithelial to mesenchymal transition (EMT), including colony formation, decreased E-cadherin and increased N-cadherin and vimentin expression. Direct contact between tumor cells and hEpSCs treated with DMBA increased integrin alpha V (ITGAV gene) expression and caused local activation of the transforming growth factor (TGF)-β1/Smad signaling pathways in hEpSCs. The novel model system described here is being used to elucidate the microenvironmental factors and biological mechanisms involved in the induction of neoplastic progression in hEpSCs in vitro by A375 melanoma cells. A better understanding of the molecular mechanisms by which melanoma cells exert these effects on hEpSCs may open up new avenues for therapeutic and preventive cancer interventions.
    Experimental Biology and Medicine 03/2011; 236(3):352-65. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adipogenesis effect of fibroblast growth factor 10 (FGF10) has been demonstrated in many studies. The aim of this study is to render a novel method which can continuously induce hypodermal adipose-derived stem cell (ADSC) differentiation and maturation in vivo and in vitro using FGF10. We constructed a recombinant pcDNA3.0-FGF10-MSC which can continuously express FGF10 by transfected FGF10 into a human mesenchymal stem cell (MSC) clone, and we cultured ADSCs from human subcutaneous resected adipose tissue. An in vitro and in vivo coculture system of pcDNA3.0-FGF10-MSC and ADSCs was then established. We observed the characteristics of ADSCs, monitored the adipogenesis-related transcription factor CAAT/enhancer binding protein-β, peroxisome proliferator-activated receptor-γ, and measured the adipose tissue layer of carrier animals. The results showed that FGF10 secreted from pcDNA3.0-FGF10-MSC could induce ADSC differentiation into mature adipocytes consistently. The study demonstrated that FGF10 can promote the adipogenesis effect in situ, and the autotransplantation of a carrier continuously secreting FGF10 may be utilized for increasing local subcutaneous adipose tissue in cosmetology.
    In Vitro Cellular & Developmental Biology - Animal 11/2009; 46(1):60-71. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study is aimed to verify whether CCL2 can induce Th2 polarization in vivo and subsequently inhibit tumor metastasis. B16 cells (a murine melanoma cell line) highly expressing CCL2 (CCL2-B16 cells) were obtained by transfection with recombinant plasmid CCL2-pcDNA3. Primary thymocytes were co-cultured with CCL2-B16 cells and STAT-6-mediated Th2 polarization was noticed after co-culture. Caudal vein injection of CCL2-B16 cells effectively inhibited pulmonary metastasis in C57BL/6 mice, but not in nude mice, indicating that T cells play a role in CCL2-induced inhibition of tumor metastasis. We found that high level of CCL2 up-regulated the expression of Th2-related cytokine (IL-4) in tumor microenvironment and increased CD4+, CD8+, and CD45RB+ cells in the peripheral blood and tumor tissues. We also demonstrated that inoculation of mice with CCL2-B16 cells prolonged mice survival time when they were reinjected with wildtype B16 cells, implying that CCL2 can activate immuno-memory in mice. It is concluded that high expression of CCL2 can induce Th2 polarization in tumor microenvironment and can effectively inhibit tumor metastasis, which casts new lights on the role of chemokines in reconstruction of immune surveillance in patients suffering from tumors.
    Immunology Letters 11/2007; 113(1):19-28. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human embryonic germ (hEG) cell is a very important alternative pluripotent stem cell resource. We describe the derivation of hEG cells from human embryonic fetal gonads over 6-8 weeks postconception. A large number of EG-like cell clumps were obtained at passage 1 and thus facilitated the following routine culture when the donor tissues were trypsinized with gentle pipetting and plated on feeder layer cells in the initial culture. Eight diploid hEG cell lines have been cultivated in vitro for extended periods while maintaining expression of markers characteristic of pluripotent stem cells. Human EG cells expressed transcription factor Oct4, a marker of pluripotency in mouse EG cells, at a high and steady level. Expression of markers indicative of differentiation along the three germ lineages was also observed in EBs. High level of alkaline phosphatase activity was shown in EG cells. These encouraging findings provide a starting point for potential applicability of hEG cells.
    Cell and Tissue Research 01/2005; 318(3):525-31. · 3.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extensive expression of stage-specific embryonic antigen-1 (SSEA-1) has been documented in some animal species, but not in human embryos. In this study, SSEA-1 was detected during human embryogenesis by whole-mount immunohistochemistry. Alkaline phosphatase (Ap) activity was detected to identify human primordial germ cells. SSEA-1 was expressed steadily and restrictedly in some cells/tissues, especially in the nephric duct and nephric tubule (including the pronephric duct and tubule, mesonephric duct and tubule, metanephric tissues) besides embryonic ectodermal cells and yolk sac from 3 to 7 weeks. High level of Ap activity was observed in vessels, part of the mesonephric duct, especially in embryonic primordial germ cells localized in the yolk sac, primitive gut, dorsal mesenteries and genital ridges. No colocalization of AP and SSEA-1 cells was observed. SSEA-1 was expressed in human embryos in a different pattern at early stages compared to that in mouse embryos. It was expressed in the nephric duct, nephric tubule, yolk sac and on the surface of embryonic ectodermal cells of the epidermis, but not in human primordial germ cells.
    Oncology Reports 01/2005; 12(6):1251-6. · 2.30 Impact Factor

Publication Stats

155 Citations
89.61 Total Impact Points

Institutions

  • 2004–2014
    • Second Military Medical University, Shanghai
      Shanghai, Shanghai Shi, China
  • 2012–2013
    • Tongji University
      Shanghai, Shanghai Shi, China
    • 307 Hospital of the Chinese People's Liberation Army
      Peping, Beijing, China
  • 2009
    • Shanghai University of Traditional Chinese Medicine
      Shanghai, Shanghai Shi, China