Brenda Martino

Abbott Laboratories, North Chicago, Illinois, United States

Are you Brenda Martino?

Claim your profile

Publications (9)37.67 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium-mediated pathologic activation of the cysteine protease calpain has been linked to neurodegenerative disorders such as Alzheimer's disease (AD) through the cleavage of proteolytic substrates that negatively affect neuronal function. Hyperphosphorylation of the microtubule-associated protein tau and the subsequent aggregation of tau filaments resulting in the intracellular formation of neurofibrillary tangles are recognized as key etiological factors in AD pathology. Cyclin-dependent kinase 5 (Cdk5), a major kinase responsible for tau hyperphosphorylation in the AD brain, becomes hyperactivated through calpain-mediated cleavage-conversion of the Cdk5 regulatory protein p35 to p25. In the present study, we examined the effects of the novel small-molecule calpain inhibitor A-705253 in acute models of tau hyperphosphorylation in vitro and in vivo. In hippocampal slices in vitro, lowering medium temperature to 33 °C increased tau phosphorylation in which incubation with A-705253 blocked low temperature-induced tau phosphorylation as measured by Western blot analysis. Pentobarbital-induced hypothermia or acute systemic LPS treatment in normal mice increased tau phosphorylation in hippocampal CA3 mossy fibers, as measured by immunohistochemistry, whereas acute A-705253 pretreatment prevented the stress-induced tau hyperphosphorylation in both models. In support of a Cdk5-mediated mechanism, A-705253 administered for two weeks in the drinking water of six month-old prepathogenic 3x Tg-AD mice resulted in decreased expression of the calpain proteolytic p25 fragment. Taken together, results of these studies suggest that calpain inhibition has potential utility in reducing tau hyperphosphorylation and may represent a novel disease-modifying approach in the treatment of AD.
    Neuropharmacology 05/2012; 63(4):606-12. · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The goal of this study was to identify a structurally distinct D(4)-selective agonist with superior oral bioavailability to our first-generation clinical candidate 1a (ABT-724) for the potential treatment of erectile dysfunction. Arylpiperazines such as (heteroarylmethyl)piperazine 1a, benzamide 2, and acetamides such as 3a,b exhibit poor oral bioavailability. Structure-activity relationship (SAR) studies with the arylpiperidine template provided potent partial agonists such as 4d and 5k that demonstrated no improvement in oral bioavailability. Further optimization with the (N-oxy-2-pyridinyl)piperidine template led to the discovery of compound 6b (ABT-670), which exhibited excellent oral bioavailability in rat, dog, and monkey (68%, 85%, and 91%, respectively) with comparable efficacy, safety, and tolerability to 1a. The N-oxy-2-pyridinyl moiety not only provided the structural motif required for agonist function but also reduced metabolism rates. The SAR study leading to the discovery of 6b is described herein.
    Journal of Medicinal Chemistry 01/2007; 49(25):7450-65. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new series of dopamine D4 receptor agonists, 1-aryl-3-(4-pyridinepiperazin-1-yl)propanone oximes, was designed through the modification of known dopamine D4 receptor agonist PD 168077. Replacement of the amide group with a methylene-oxime moiety produced compounds with improved stability and efficacy. Structure-activity relationsips (SAR) of the aromatic ring linked to the N-4-piperazine ring confirmed the superiority of 2-pyridine as a core for D4 agonist activity. A two-methylene linker between the oxime group and the N-1-piperazine ring displayed the best profile. New dopamine D4 receptor agonists, exemplified by (E)-1-(4-chlorophenyl)-3-(4-pyridin-2-ylpiperazin-1-yl)propan-1-one O-methyloxime (59a) and (E)-1-(3-chloro-4-fluorophenyl)-3-(4-pyridin-2-ylpiperazin-1-yl)propan-1-one O-methyloxime (64a), exhibited favorable pharmacokinetic profiles and showed oral bioavailability in rat and dog. Subsequent evaluation of 59a in the rat penile erection model revealed in vivo activity, comparable in efficacy to apomorphine. Our results suggest that the oximes provide a novel structural linker for 4-arylpiperazine-based D4 agonists, possessing leadlike quality and with potential to develop a new class of potent and selective dopamine D4 receptor agonists.
    Journal of Medicinal Chemistry 09/2006; 49(17):5093-109. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dopamine D4 receptor has been investigated for its potential role in several CNS disorders, notably schizophrenia and more recently, erectile dysfunction. Whereas studies have investigated dopamine D4 receptor-mediated signaling in vitro, there have been few, if any, attempts to identify dopamine D4 receptor signal transduction pathways in vivo. In the present studies, the selective dopamine D4 agonist PD168077 induces c-Fos expression and extracellular signal regulated kinase (ERK) phosphorylation in the hypothalamic paraventricular nucleus (PVN), a site known to regulate proerectile activity. The selective dopamine D4 receptor antagonist A-381393 blocked both c-Fos expression and ERK1/2 phosphorylation produced by PD168077. In addition, PD168077-induced ERK1/2 phosphorylation was prevented by SL327, an inhibitor of ERK1/2 phosphorylation. Interestingly, treatment with A-381393 alone significantly reduced the amount of Fos immunoreactivity as compared to basal expression observed in vehicle-treated controls. Dopamine D4 receptor and c-Fos coexpression in the PVN was observed using double immunohistochemical labeling, suggesting that PD168077-induced signaling may result from direct dopamine D4 receptor activation. Our results demonstrate functional dopamine D4 receptor expression and natural coupling in the PVN linked to signal transduction pathways that include immediate early gene and MAP kinase activation. Further, the ability of the selective dopamine D4 antagonist A-381393 alone to reduce c-Fos expression below control levels may imply the presence of a tonic dopamine D4 receptor activation under basal conditions in vivo. These findings provide additional evidence that the PVN may be a site of dopamine D4 receptor-mediated proerectile activity.
    Neuropharmacology 05/2006; 50(5):521-31. · 4.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated that Fos-like immunoreactivity is increased in spinal dorsal horn neurons in several pain models, and have suggested that Fos-like immunoreactivity could be used as a marker of neurons activated by painful stimulation. In the present study, we evaluated nociceptive behaviors and spinal Fos-like immunoreactivity in a rat skin incision model of post-operative pain. In this model, evoked and non-evoked pain behaviors were observed at least for 2 days after paw surgery, an increased number of Fos-like immunoreactive neurons was observed in the spinal dorsal horn at lumbar levels 4-5 two-hour post-surgery. The number of Fos-like immunoreactive neurons was significantly greater in animals with skin-muscle incision compared to animals with skin-alone incision. Interestingly, spinal Fos-like immunoreactivity was quickly normalized in rats with paw surgery at later time points (8 and 24 h post-surgery), whereas nociceptive behaviors were still observed. Furthermore, at 24 h post-surgery, spinal Fos-like immunoreactivity induced by thermal stimulation (42, 44, 46, 48, 52 degrees C for 15 s) was not significantly different between sham animals and animals with surgery. In both groups, an increase in spinal Fos-like immunoreactive neurons was observed with increasing temperatures, with similar laminar distribution. Finally, systemic morphine reduced post-operative pain and Fos-like immunoreactivity in a naloxone reversible manner, with greater potency and efficacy on behavioral endpoints than on Fos-like immunoreactivity. These results demonstrate a different profile of nociceptive behaviors and spinal Fos-like immunoreactivity in the rat skin incision model, suggesting a limited potential of spinal Fos-like immunoreactivity to study post-surgical pain and its pharmacology.
    European Journal of Pharmacology 03/2006; 531(1-3):108-17. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of in vivo studies in a conscious rat model was conducted to investigate the role of oxytocinergic and dopaminergic neurotransmission in the central regulation of penile erection. Oxytocin, when administrated either intracerebroventricularly (i.c.v.) or intrathecally (i.t.) at the spinal levels of L4-L6, produced dose-related erectogenic effects with a maximum at 0.1 microg/rat i.c.v. or 0.03 microg/rat i.t. Oxytocin-evoked penile activity was attenuated by the inhibitory effect of the selective oxytocin antagonist vasotocin analog [Pmp-Tyr(Me)-Ile-Thr-Asn-Cys]-Pro-Orn-Tyr-NH2 (0.1-1 microg, i.c.v. or i.t.). Penile erection induced by oxytocin was blocked by the dopaminergic receptor antagonist clozapine (1-10 micromol/kg i.p.) in a dose-dependent manner. Conversely, oxytocin antagonist microinjected locally (i.c.v. or i.t.) significantly attenuated the pro-erectile effects of systemic (s.c.) apomorphine, a centrally acting erectogenic agent through dopaminergic receptors. Together, these data indicate a possible concomitant role between dopamine and oxytocin in mediating penile erection at both the spinal and supraspinal sites.
    Pharmacology Biochemistry and Behavior 09/2005; 81(4):797-804. · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new class of agents with potential utility for the treatment of erectile dysfunction has been discovered, guided by the hypothesis that selective D4 agonists are erectogenic but devoid of the side effects typically associated with dopaminergic agents. The lead agent 2-(4-pyridin-2-ylpiperazin-1-ylmethyl)-1H-benzimidazole (1, ABT-724) was discovered by optimization of a series of benzimidazole arylpiperazines. This highly selective D4 agonist was found to be very potent and efficacious in vivo, eliciting penile erections in rats at a dose of 0.03 micromol/kg, with a positive response rate of 77% erectile incidence. Even at high doses, it was devoid of side effects in animal models of central nervous system behaviors, emesis, or nausea. The structure-activity relationship of the parent benzimidazole series leading to 1 is described, with the detailed in vitro and in vivo profiles described. Distinctive structural features were discovered that are associated with D4 selective agonism in this series of analogues.
    Journal of Medicinal Chemistry 08/2004; 47(15):3853-64. · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apomorphine has been used as a pharmacological probe of dopaminergic receptors in a variety of central nervous system disorders. The utility of apomorphine as an agent for the treatment of erectile dysfunction has also been demonstrated clinically. Apomorphine is a nonselective dopaminergic receptor agonist with potent binding affinity (Ki) of 101, 32, 26, 2.6, and 10 nM for D1, D2, D3, D4, and D5, respectively. When administered either subcutaneously (s.c.) or intracerebroventricularly (i.c.v.), apomorphine fully evoked penile erections in conscious rats with maximum effect at 0.1 micromol/kg s.c. and 3 nmol/rat i.c.v., respectively. Apomorphine was less efficacious when injected intrathecally (i.t.) to L4-L6 spinal levels (50% at 30-100 nmol/rat i.t.). Penile erection facilitated by apomorphine was blocked by haloperidol and clozapine (i.p. and i.c.v.) but not by domperidone (a peripherally acting dopaminergic receptor antagonist). In this model using conscious rats, penile erection was significantly induced by quinpirole (D2-D3-D4 receptor agonist), but not by R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol (SKF38393) and R(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzapine (SKF81297) (D1 receptor agonists), or a D2 receptor agonist R-5,6-dihydro-N,N-dimethyl-4H-imidazo[4,5,1-ij]quinolin-5-amine (PNU-95666E). The role of D4 receptors in penile erection was demonstrated using selective D4 receptor agonists [(4-phenylpiperazinyl)-methyl]benzamide (PD168077) and 5-fluoro-2-[[4-(2-pyridinyl)-1-piperazinyl]methyl]-1H-indole (CP226269), whether administered systemically (s.c.) or locally in the brain (i.c.v.). The ability of apomorphine to activate D3 receptors in relation to its proerectile activity remains to be elucidated by use of selective subtype agonists. These results suggest that the proerectile action of apomorphine in rats is mediated at supraspinal levels and that this effect is not mimicked by a D2 receptor agonist but associated with activation of D4 receptors.
    Journal of Pharmacology and Experimental Therapeutics 01/2004; 308(1):330-8. · 3.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that the vanilloid receptor, VR1, is an important peripheral mediator of nociception. VR1 receptors are also located in several brain regions, yet it is uncertain whether these supraspinal VR1 receptors have any influence on the nociceptive system. To investigate a possible nociceptive role for supraspinal VR1 receptors, capsaicin (10 nmol in 0.4 microl) was microinjected into either the dorsal (dPAG) or ventral (vPAG) regions of the periaqueductal gray. Capsaicin-related effects on tail flick latency (immersion in 52 degrees C water) and on neuronal activity (on-, off-, and neutral cells) in the rostral ventromedial medulla (RVM) were measured in lightly anesthetized rats. Administration of capsaicin into the dPAG but not the vPAG caused an initial hyperalgesic response followed later by analgesia (125 +/- 20.96 min postinjection). The tail flick-related burst in on-cell activity was triggered earlier in the hyperalgesic phase and was delayed or absent during the analgesic phase. Spontaneous activity of on-cells increased at the onset of the hyperalgesic phase and decreased before and during the analgesic phase. The tail flick-related pause in off-cell activity as well as spontaneous firing for these cells was unchanged in the hyperalgesic phase. During the analgesic phase, off-cells no longer paused during noxious stimulation and had increased levels of spontaneous activity. Neutral cell firing was unaffected in either phase. Pretreatment with the VR1 receptor antagonist, capsazepine (10 nmol in 0.4 microl), into the dPAG blocked the capsaicin-induced hyperalgesia as well as the corresponding changes in on- and off-cell activity. VR1 receptor immunostaining was observed in the dPAG of untreated rats. Microinjection of capsaicin likely sensitized and then desensitized dPAG neurons affecting nocifensive reflexes and RVM neuronal activity. These results suggest that supraspinal VR1 receptors in the dPAG contribute to descending modulation of nociception.
    Journal of Neurophysiology 11/2003; 90(4):2702-10. · 3.30 Impact Factor