Catherine Tardin

University of Bordeaux, Burdeos, Aquitaine, France

Are you Catherine Tardin?

Claim your profile

Publications (4)23.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Using single-molecule microscopy, we present a method to quantify the number of single autofluorescent proteins when they cannot be optically resolved. This method relies on the measurement of the total intensity emitted by each aggregate until it photobleaches. This strategy overcomes the inherent problem of blinking of green fluorescent proteins. In the case of small protein aggregates, our method permits us to describe the mean composition with a precision of one protein. For aggregates containing a large number of proteins, it gives access to the average number of proteins gathered and a signature of the inhomogeneity of the aggregates' population. We applied this methodology to the quantification of small purified citrine multimers.
    Journal of Biomedical Optics 05/2008; 13(3):031216. DOI:10.1117/1.2940600 · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We performed a visualization of membrane proteins labeled with 10-nm gold nanoparticles in cells, using an all-optical method based on photothermal interference contrast. The high sensitivity of the method and the stability of the signals allows 3D imaging of individual nanoparticles without the drawbacks of photobleaching and blinking inherent to fluorescent markers. A simple analytical model is derived to account for the measurements of the signal amplitude and the spatial resolution. The photothermal interference contrast method provides an efficient, reproducible, and promising way to visualize low amounts of proteins in cells by optical means.
    Proceedings of the National Academy of Sciences 10/2003; 100(20):11350-5. DOI:10.1073/pnas.1534635100 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Trafficking of AMPA receptors in and out of synapses is crucial for synaptic plasticity. Previous studies have focused on the role of endo/exocytosis processes or that of lateral diffusion of extra-synaptic receptors. We have now directly imaged AMPAR movements inside and outside synapses of live neurons using single-molecule fluorescence microscopy. Inside individual synapses, we found immobile and mobile receptors, which display restricted diffusion. Extra-synaptic receptors display free diffusion. Receptors could also exchange between these membrane compartments through lateral diffusion. Glutamate application increased both receptor mobility inside synapses and the fraction of mobile receptors present in a juxtasynaptic region. Block of inhibitory transmission to favor excitatory synaptic activity induced a transient increase in the fraction of mobile receptors and a decrease in the proportion of juxtasynaptic receptors. Altogether, our data show that rapid exchange of receptors between a synaptic and extra-synaptic localization occurs through regulation of receptor diffusion inside synapses.
    The EMBO Journal 10/2003; 22(18):4656-65. DOI:10.1093/emboj/cdg463 · 10.75 Impact Factor
  • Source