Are you Takanori Kawamura?

Claim your profile

Publications (2)10.84 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: E7389, a macrocyclic ketone analog of the marine natural product halichondrin B, currently is undergoing clinical trials for cancer. This fully synthetic agent exerts its highly potent in vitro and in vivo anticancer effects via tubulin-based antimitotic mechanisms, which are similar or identical to those of parental halichondrin B. In an attempt to understand the impressive potency of E7389 in animal models of human cancer, its ability to induce apoptosis following prolonged mitotic blockage was evaluated. Treatment of U937 human histiocytic lymphoma cells with E7389 led to time-dependent collection of cells in the G2-M phase of the cell cycle, beginning as early as 2 h and becoming maximal by 12 h. Increased numbers of hypodiploid events were seen beginning at 12 h, suggesting initiation of apoptosis after prolonged E7389-induced mitotic blockage. The identity of hypodiploid events as apoptotic cells under these conditions was confirmed by two additional morphologic criteria: green to orange/yellow shifts on acridine orange/ethidium bromide staining, and cell surface annexin V binding as assessed by flow cytometry. Several biochemical correlates of apoptosis also were seen following E7389 treatment, including phosphorylation of the antiapoptotic protein Bcl-2, cytochrome c release from mitochondria, proteolytic activation of caspase-3 and -9, and cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase (PARP). In LNCaP human prostate cancer cells, treatment with E7389 also led to generation of hypodiploid cells, activation of caspase-3 and -9, and appearance of cleaved PARP, indicating that E7389 can activate cellular apoptosis pathways under anchorage-independent and -dependent cell culture conditions. These results show that prolonged mitotic blockage by E7389 can lead to apoptotic cell death of human cancer cells in vitro and can provide a mechanistic basis for the significant in vivo anticancer efficacy of E7389.
    Cancer Research 09/2004; 64(16):5760-6. · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Borrelidin, an antibiotic with anti-angiogenic activity, not only suppresses new capillary tube formation, but also collapses formed capillary tubes in a rat aorta culture model. Since it selectively inhibits threonyl-tRNA synthetase, we examined the effect of threonine on its anti-angiogenic activity. We found that a high concentration of threonine (1 mM) attenuated the ability of borrelidin to inhibit both capillary tube formation in the rat aorta culture model and human umbilical vein endothelial cells (HUVEC) proliferation, yet did not affect the ability of borrelidin to collapse formed capillary tubes or to induce apoptosis in HUVEC. Borrelidin activated caspase-3 and -8, and inhibitors of both caspase-3 and -8 suppressed borrelidin-induced apoptosis in HUVEC. Taken together, these data suggest that the anti-angiogenic effects of borrelidin are mediated through at least two mechanisms, i.e. one threonine-dependent and the other threonine-independent, and borrelidin induces apoptosis in endothelial cells via the caspase-8/-3 pathway.
    The Journal of Antibiotics 09/2003; 56(8):709-15. · 2.19 Impact Factor