Maria Hottelet

Brigham and Women's Hospital , Cambridge, MA, United States

Are you Maria Hottelet?

Claim your profile

Publications (11)56.77 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Constitutive activation of the NF-kappaB pathway is required for survival of the activated B cell-like (ABC) subgroup of diffuse large B-cell lymphoma (DLBCL). Here we show that a small molecule IkappaB kinase (IKK) inhibitor, PS-1145, and related compounds are toxic for ABC DLBCL cell lines but not for cell lines derived from the other prevalent form of DLBCL, germinal center B cell-like DLBCL. Treatment of ABC lines with these inhibitors rapidly induced a series of gene expression changes that were attributable to cessation of constitutive IKK activity, similar to changes induced by acute expression of genetic inhibitors of NF-kappaB, confirming the effectiveness and specificity of this compound. Before cell death, inhibition of IKK also induced features of apoptosis and an arrest in the G1 phase of the cell cycle. To test further the specificity of this toxicity, an inducible form of NF-kappaB was created by fusing the p65 NF-kappaB subunit with the ligand-binding domain of the estrogen receptor (p65-ERD). In the presence of tamoxifen, p65-ERD reversed the toxicity of IKK inhibition and restored expression of many NF-kappaB target genes. Another subgroup of DLBCL, primary mediastinal B-cell lymphoma (PMBL), also expresses NF-kappaB target genes, and treatment of a PMBL cell line with an IKK inhibitor was toxic and induced gene expression changes of a distinct group of NF-kappaB target genes. These studies validate the NF-kappaB pathway as a promising therapeutic target in ABC DLBCL, PMBL, and other lymphomas that depend on the activity of NF-kappaB for survival and proliferation.
    Clinical Cancer Research 02/2005; 11(1):28-40. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitors of IκB kinase (IKK) have long been sought as specific regulators of NF-κB. A screening effort of the endogenous IKK complex allowed us to identify 5-bromo-6-methoxy-β-carboline as a nonspecific IKK inhibitor. Optimization of this β-carboline natural product derivative resulted in a novel class of selective IKK inhibitors with IC50s in the nanomolar range. In addition, we show that one of these β-carboline analogues inhibits the phosphorylation of IκBα and subsequent activation of NF-κB in whole cells, as well as blocking TNF-α release in LPS-challenged mice.
    Bioorganic & Medicinal Chemistry Letters 10/2003; 13(14):2419-2422. · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitors of IkappaB kinase (IKK) have long been sought as specific regulators of NF-kappaB. A screening effort of the endogenous IKK complex allowed us to identify 5-bromo-6-methoxy-beta-carboline as a nonspecific IKK inhibitor. Optimization of this beta-carboline natural product derivative resulted in a novel class of selective IKK inhibitors with IC(50)s in the nanomolar range. In addition, we show that one of these beta-carboline analogues inhibits the phosphorylation of IkappaBalpha and subsequent activation of NF-kappaB in whole cells, as well as blocking TNF-alpha release in LPS-challenged mice.
    Bioorganic & Medicinal Chemistry Letters 08/2003; 13(14):2419-22. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been postulated that post-translational modifications and relocalization of proteins during apoptosis may lead to presentation of these molecules to the immune system in such a way that normal mechanisms of tolerance are bypassed. In the present study, Jurkat cells were induced to undergo apoptosis by treatment with the chemotherapeutic agent Ara-C. BALB/c mice were then immunized with the apoptotic cells and hybridomas were generated. Using an indirect immunofluorescence assay, the monoclonal antibodies produced were screened by flow cytometry for those monoclonal antibodies demonstrating reactivity with permeabilized apoptotic Jurkat cells but not with non-permeabilized normal or apoptotic Jurkat cells. Of 281 monoclonal antibodies, 20 monoclonal antibodies with these properties were selected for further analysis. Using 32P- or 35S-metabolically labelled Jurkat cells, these selected monoclonal antibodies were screened for their ability to recognize autoantigens by immunoprecipitation and Western blotting. Well characterized autoimmune sera were then used to confirm the identity of autoantigens by immunoblotting. We demonstrate that immunization of normal mice with apoptotic Jurkat cells results in the formation of antibodies targeting multiple autoantigens or autoantigen complexes, including Ku, rRNPs, snRNPs and vimentin. These findings are consistent with the hypothesis that apoptosis can contribute to the development of autoimmunity.
    Journal of Autoimmunity 03/2001; 16(1):59-69. · 8.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of NF-kappaB occurs through phosphorylation-dependent ubiquitination of IkappaBalpha, which is degraded by the 26S proteasome. Recent studies have shown that ubiquitination of IkappaBalpha is carried out by a ubiquitin-ligase enzyme complex called SCF(beta(TrCP)). Here we show that Nedd8 modification of the Cul-1 component of SCF(beta(TrCP)) is important for function of SCF(beta(TrCP)) in ubiquitination of IkappaBalpha. In cells, Nedd8-conjugated Cul-1 was complexed with two substrates of SCF(beta(TrCP)), phosphorylated IkappaBalpha and beta-catenin, indicating that Nedd8-Cul-1 conjugates are part of SCF(beta(TrCP)) in vivo. Although only a minute fraction of total cellular Cul-1 is modified by Nedd8, the Cul-1 associated with ectopically expressed betaTrCP was highly enriched for the Nedd8-conjugated form. Moreover, optimal ubiquitination of IkappaBalpha required Nedd8 and the Nedd8-conjugating enzyme, Ubc12. The site of Nedd8 ligation to Cul-1 is essential, as SCF(beta(TrCP)) containing a K720R mutant of Cul-1 only weakly supported IkappaBalpha ubiquitination compared to SCF(beta(TrCP)) containing WT Cul-1, suggesting that the Nedd8 ligation of Cul-1 affects the ubiquitination activity of SCF(beta(TrCP)). These observations provide a functional link between the highly related ubiquitin and Nedd8 pathways of protein modification and show how they operate together to selectively target the signal-dependent degradation of IkappaBalpha.
    Molecular and Cellular Biology 05/2000; 20(7):2326-33. · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of NF-κB occurs through phosphorylation-dependent ubiquitination of IκBα, which is degraded by the 26S proteasome. Recent studies have shown that ubiquitination of IκBα is carried out by a ubiquitin-ligase enzyme complex called SCFβTrCP. Here we show that Nedd8 modification of the Cul-1 component of SCFβTrCP is important for function of SCFβTrCP in ubiquitination of IκBα. In cells, Nedd8-conjugated Cul-1 was complexed with two substrates of SCFβTrCP, phosphorylated IκBα and β-catenin, indicating that Nedd8–Cul-1 conjugates are part of SCFβTrCP in vivo. Although only a minute fraction of total cellular Cul-1 is modified by Nedd8, the Cul-1 associated with ectopically expressed βTrCP was highly enriched for the Nedd8-conjugated form. Moreover, optimal ubiquitination of IκBα required Nedd8 and the Nedd8-conjugating enzyme, Ubc12. The site of Nedd8 ligation to Cul-1 is essential, as SCFβTrCPcontaining a K720R mutant of Cul-1 only weakly supported IκBα ubiquitination compared to SCFβTrCP containing WT Cul-1, suggesting that the Nedd8 ligation of Cul-1 affects the ubiquitination activity of SCFβTrCP. These observations provide a functional link between the highly related ubiquitin and Nedd8 pathways of protein modification and show how they operate together to selectively target the signal-dependent degradation of IκBα.
    Molecular and Cellular Biology. 04/2000; 20(7).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins cleaved by apoptotic caspases are commonly recognized by autoantibodies found in the serum of patients with rheumatic disease. We report that the 72-kDa signal recognition particle (SRP) protein, a rare target of autoantibodies found in the serum of patients with dermatomyositis and systemic lupus erythematosus, is rapidly cleaved in Jurkat T cells treated with apoptotic (i.e. Fas ligation, treatment with gamma or ultraviolet radiation, or co-culture with anisomycin or staurosporine) but not proliferative (CD3 cross-linking) stimuli. Cleavage of SRP 72 produces a 66-kDa amino-terminal fragment and a 6-kDa carboxyl-terminal fragment that is selectively phosphorylated on serine residues. Cleavage of SRP 72 is prevented by chemical and peptide caspase inhibitors, and by overexpression of bcl-2, an inhibitor of apoptotic cell death. Analysis of the carboxyl terminus of SRP 72 has identified a putative cleavage site (SELD/A) for group III caspases, and carboxyl-terminal serine residues that are highly conserved in phylogeny. Both serine phosphorylation and caspase cleavage of SRP 72 are observed in cells derived from human, dog, rat, and mouse. Canine SRP 72 is cleaved in vitro by recombinant caspase 3 but retains the ability to mediate transport of a signal peptide-containing protein into the endoplasmic reticulum lumen. The 72-kDa component of the SRP joins a growing list of autoantigens that undergo post-translational modifications during programmed cell death.
    Journal of Biological Chemistry 01/1999; 273(52):35362-70. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins subject to proteolysis or phosphorylation during apoptosis are commonly precipitated by autoantibodies found in the serum of patients with systemic lupus erythematosus (SLE). We screened a panel of murine monoclonal and human monospecific sera reactive with known autoantigens for their ability to selectively precipitate phosphoproteins from apoptotic Jurkat T cell lysates. Sera known to recognize the U1-small nuclear ribonucleoprotein (snRNP) complex (confirmed by their ability to precipitate U1-snRNA) selectively precipitated a phosphoprotein complex (pp54, pp42, pp34, and pp23) from apoptotic lysates. Monoclonal antibodies reactive with U1-snRNP proteins precipitated the same phosphoprotein complex from apoptotic lysates. The phosphorylation and/or recruitment of these proteins to the U1-snRNP complex is induced by multiple apoptotic stimuli (e.g., Fas ligation, gamma irradiation, or UV irradiation), and is blocked by overexpression of bcl-2. The U1-snRNP-associated phosphoprotein complex is immunoprecipitated by monoclonal antibodies reactive with serine/arginine (SR) proteins that comprise a structurally related family of splicing factors. The association of phosphorylated SR proteins with the U1-snRNP complex in cells undergoing apoptosis suggests a mechanism for regulation of alternative splicing of apoptotic effector molecules.
    Journal of Experimental Medicine 03/1998; 187(4):547-60. · 13.21 Impact Factor
  • Source
    P J Utz, M Hottelet, P H Schur, P Anderson
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins cleaved by interleukin-1 beta converting enzyme family proteases during apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus (SLE). We have tested the possibility that proteins phosphorylated in cells undergoing apoptosis are also targets for autoantibody production in patients with autoimmune disease. Sera from 9/12 patients containing antinuclear antibodies (10/12 meeting diagnostic criteria for SLE or a lupus overlap syndrome), precipitated new phosphoproteins from lysates derived from Jurkat T cells treated with apoptotic stimuli (i.e., Fas-ligation, gamma irradiation, ultraviolet irradiation), but not with an activation (i.e., CD3-ligation) stimulus. Sera derived from individual patients precipitated different combinations of seven distinct serine-phosphorylated proteins. None of these phosphoproteins were included in precipitates prepared using sera from patients with diseases that are not associated with autoantibody production or using serum from rheumatoid arthritis patients. Protein phosphorylation precedes, or is coincident with, the induction of DNA fragmentation, and is not observed when apoptosis is inhibited by overexpression of bcl-2. Serum from four patients precipitated a serine/threonine kinase from apoptotic cell lysates that phosphorylates proteins of 23-, 34-, and 46-kD in in vitro kinase assays. Our results suggest that proteins phosphorylated during apoptosis may be preferred targets for autoantibody production in patients with SLE.
    Journal of Experimental Medicine 04/1997; 185(5):843-54. · 13.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TrCP . Here we show that Nedd8 modification of the Cul-1 component of SCFb TrCP is important for function of SCFb TrCP in ubiquitination of IkBa. In cells, Nedd8-conjugated Cul-1 was complexed with two substrates of SCFb TrCP , phosphorylated IkBa and b-catenin, indicating that Nedd8-Cul-1 conjugates are part of SCFb TrCP in vivo. Although only a minute fraction of total cellular Cul-1 is modified by Nedd8, the Cul-1 associated with ectopically expressed bTrCP was highly enriched for the Nedd8-conjugated form. Moreover, optimal ubiquitination of IkBa required Nedd8 and the Nedd8-conjugating enzyme, Ubc12. The site of Nedd8 ligation to Cul-1 is essential, as SCFb TrCP containing a K720R mutant of Cul-1 only weakly supported IkBa ubiquitination compared to SCFb TrCP containing WT Cul-1, suggesting that the Nedd8 ligation of Cul-1 affects the ubiquitination activity of SCFb TrCP . These observations provide a functional link between the highly related ubiquitin and Nedd8 pathways of protein modification and show how they operate together to selectively target the signal-dependent degradation of IkBa.

Publication Stats

796 Citations
56.77 Total Impact Points

Institutions

  • 1998–1999
    • Brigham and Women's Hospital
      • • Department of Medicine
      • • Division of Rheumatology, Immunology, and Allergy
      Cambridge, MA, United States
  • 1997
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States