Gabriele Eden

Hannover Medical School, Hanover, Lower Saxony, Germany

Are you Gabriele Eden?

Claim your profile

Publications (6)22.68 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The urokinase receptor (uPAR) was originally identified as the membrane receptor of the serine protease urokinase (uPA), thereby implicated in the plasminogen activation cascade and regulation of pericellular proteolysis. Later on, vitronectin was showed to be another major ligand providing uPAR with a role in cell adhesion. Other unrelated ligands have been subsequently reported including for example factor XII and SRPX2 expanding the functions of uPAR to unexpected biological areas such as the initiation of the coagulation cascade or the regulation of language development. Due to its glycosylphosphatidylinositol (GPI) anchor, uPAR has no intracellular domain and thus exerts its signaling capacity through lateral interactions with other components of the plasma membrane that actually mediate uPAR-induced signals. As yet, a total 42 proteins interacting directly with uPAR can be numbered comprising 9 soluble ligands and 33 lateral partners. The fact that uPAR interacts with members of three major families of membrane receptors i.e. G protein-coupled receptors, receptor tyrosine kinases, and integrins implies that the actual number of components constituting the uPAR interacome is extremely high. For example, 156 factors belong to the integrin adhesome. Moreover, in the light of the wide diversity of the components of the uPAR interactome, uPAR appears to be an essential player of major biological systems including the blood coagulation, complement and plasma kallikrein-kinin cascades. This review describes the soluble ligands and lateral partners of the uPAR interactome, the mechanisms regulating uPAR interactions and their proved and/or potential biological functions.
    Current pharmaceutical design 06/2011; 17(19):1874-89. · 4.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The urokinase receptor (uPAR) is a multifunctional glycosylphosphatidylinositol-anchored protein that regulates important processes such as gene expression, cell proliferation, adhesion, migration, invasion, and metastasis. uPAR is an essential component of the plasminogen activation cascade, a protease receptor that binds the urokinase-type plasminogen activator. uPAR is also an adhesion-modulating receptor, and a signalling receptor transmitting signals to the cell through lateral interactions with a wide array of membrane receptors. Altogether, the external ligands and membrane-bound partners of uPAR constitute a rich uPAR interactome. Recently, a new ligand of uPAR has been identified as the SRPX2 protein which is essential in language and cognitive development. SRPX2 is the second identified gene involved in language disorders. However, previous studies revealed cognitive disorders and defects in the development of the GABAergic interneurons in uPAR null mice. In addition, the expression of uPAR correlates with important human diseases such as epilepsy, autism, multiple sclerosis, Alzheimer's, AIDS dementia, cerebral malaria, and brain tumours. Therefore, uPAR has unexpectedly become a significant receptor in the central nervous system and made a few steps into philosophy. Language is indeed intimately linked to human culture. This in-depth review presents the structure and the sequences of uPAR that are essential for drug design and the generation of new inhibitors. In addition, we summarize all the inhibitors of uPAR that have been created so far. Finally, we discuss the functions of uPAR in the development, functioning, and pathology of the central nervous system.
    CNS & neurological disorders drug targets 03/2011; 10(2):271-94. · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent mesenchymal stem cells (MSCs) have regenerative properties and are recognized as putative players in the pathogenesis of cardiovascular diseases. The underlying molecular mechanisms remain, however, sparsely explored. Our study was designed to elucidate a probable role for the multifunctional urokinase (uPA)/urokinase receptor (uPAR) system in MSC regulation. Though uPAR has been implicated in a broad spectrum of pathophysiological processes, nothing is known about uPAR in MSCs. uPAR was required to mobilize MSCs from the bone marrow (BM) of mice stimulated with granulocyte colony-stimulating factor (G-CSF) in vivo. An insignificant amount of MSCs was mobilized in uPAR(-/-) C57BL/6J mice, whereas in wild-type animals G-CSF induced an eight-fold increase of mobilized MSCs. uPAR(-/-) mice revealed up-regulated expression of G-CSF and stromal cell-derived factor 1 (CXCR4) receptors in BM. uPAR down-regulation leads to inhibition of human MSC migration, as shown in different migration assays. uPAR down- or up-regulation resulted in inhibition or stimulation of MSC differentiation into vascular smooth muscle cells (VSMCs) correspondingly, as monitored by changes in cell morphology and expression of specific marker proteins. Injection of fluorescently labelled MSCs in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice after femoral artery wire injury demonstrated impaired engraftment of uPAR-deficient MSCs at the place of injury. These data suggest a multifaceted function of uPAR in MSC biology contributing to vascular repair. uPAR might guide and control the trafficking of MSCs to the vascular wall in response to injury or ischaemia and their differentiation towards functional VSMCs at the site of arterial injury.
    Cardiovascular Research 11/2010; 90(1):113-21. · 5.81 Impact Factor
  • Atherosclerosis Supplements - ATHEROSCLER SUPPL. 01/2010; 11(2):12-12.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune complex (IC) deposition induces an acute inflammatory response with tissue injury. IC-induced inflammation is mediated by inflammatory cell infiltration, a process highly regulated by the cell surface-specific receptor (uPAR), a binding partner for the urokinase-type plasminogen activator (uPA). We assessed the role of the uPA/uPAR system in IC-induced inflammation using the pulmonary reverse passive Arthus reaction in mice lacking uPA and uPAR compared with their corresponding wild-type controls. Both uPA-deficient C57BL/6J (uPA(-/-)) and uPAR-deficient mice on a mixed C57BL/6J (75%) x 129 (25%) background (uPAR(-/-)) demonstrated a marked reduction of the inflammatory response due to decreased production of proinflammatory mediators TNF-alpha and Glu-Leu-Arg (ELR)-CXC chemokine MIP-2. In uPAR(-/-) animals, the reduction of inflammatory response was more pronounced because of decreased migratory capacity of polymorphonuclear leukocytes. We show that the uPA/uPAR system is activated in lung of wild-type mice, particularly in resident alveolar macrophages (AM), early in IC-induced alveolitis. This activation is necessary for an adequate C5a anaphylatoxin receptor signaling on AM that, in turn, modulates the functional balance of the activating/inhibitory IgG FcgammaRs responsible for proinflammatory mediator release. These data provide the first evidence that the uPA/uPAR plays an important immunoregulatory role in the initiation of the reverse passive Arthus reaction in the lung by setting the threshold for C5a anaphylatoxin receptor/FcgammaR activation on AM. The findings indicate an important link between the uPA/uPAR system and the two main components involved in the IC inflammation, namely, complement and FcgammaRs.
    The Journal of Immunology 10/2005; 175(6):4060-8. · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years an increasing number of cases with polyomavirus (PV)-nephropathy after renal transplantation were reported from several transplant centres. New, highly potent immunosuppressive drugs like tacrolimus or mycophenolate mofetil were accused as risk factors for this increase. However, data about the incidence of PV-nephropathy in correlation to different immunosuppressive therapy concepts are lacking. All renal transplant biopsies performed at Hannover Medical School between 1999 and 2001 (n=1276) were immunohistochemically screened for the presence of PV-specific proteins. The results were correlated to the different immunosuppressive therapy protocols and patients with PV-nephropathy were compared with a matched control group. PV-nephropathy was found in <1% of all investigated allograft biopsies (11/1276) and in approximately 1% of all patients (7/638), respectively. All patients being immunohistochemically positive for PV-specific proteins also showed the typical morphological changes of PV-nephropathy. Four out of seven patients with PV-nephropathy were under triple immunosuppression comprising tacrolimus and mycophenolate mofetil. Under this immunosuppressive therapy protocol an eight times higher incidence and a 13 times higher risk (multivariate odds ratio 12.7) of PV-nephropathy was observed in our patients compared with the control group. PV-nephropathy is a rare but serious complication after renal transplantation. A small group of patients under intensive immunosuppression comprising tacrolimus in combination with mycophenolate mofetil has a significantly increased risk of acquiring this deleterious complication.
    Nephrology Dialysis Transplantation 06/2003; 18(6):1190-6. · 3.37 Impact Factor