Stephanie Bui

Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States

Are you Stephanie Bui?

Claim your profile

Publications (6)27.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mice lacking all pro-opiomelanocortin (POMC)-derived peptides have been created by gene targeting of the POMC locus in embryonic stem cells. Phenotypes of the POMC null homozygous mutants include obesity, pigmentation defects, and adrenal insufficiency. Here, we report that both POMC null homozygous and heterozygous mutants also develop pituitary gland tumors, which result in their premature death. The tumors occur with 100% penetrance in both POMC heterozygous and homozygous genotypes. Histological examinations reveal that tumors start from hyperplastic focal points of melanotrophic cells within the intermediate lobe. Based on the morphological and immunohistological features, we have classified the tumors as non-invasive, non-secreting, intermediate lobe adenomas. These findings uncover potential novel roles of melanocortins in the regulation of cell proliferation.
    Cellular and molecular biology (Noisy-le-Grand, France) 02/2006; 52(2):47-52. · 1.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adult mouse mutants homozygous for an engineered proopiomelanocortin (POMC)-null allele lack macroscopically distinct adrenal glands and circulating adrenal hormones. To understand the basis for this adrenal defect, we compared the development of adrenal primordia in POMC-null mice and littermate controls. POMC-null mutant mice are born with adrenal glands that are morphologically indistinguishable from those of their wild-type littermates. However, in mutants adrenal cells fail to proliferate postnatally and adrenals atrophy until they have disappeared macroscopically in the adult. While present, mutant adrenals are differentiated as evidenced by the presence of enzymes for the final steps in the synthesis of corticosterone, aldosterone, and catecholamines. However, in contrast to adrenals of wild-type littermates, adrenals of POMC-null mutants do not produce corticosterone, not even in response to acute stimulation with exogenous ACTH. They do produce aldosterone; however, it is produced at reduced levels correlating with adrenal size. Transplantation of POMC-null mutant adrenals to adrenalectomized wild-type littermates results in adrenals with normal morphology and production of both corticosterone and aldosterone. These findings demonstrate that POMC peptides are not required for prenatal adrenal development and that POMC peptides in addition to ACTH are required for postnatal proliferation and maintenance of adrenal structures capable of producing both glucocorticoids and mineralocorticoids.
    Endocrinology 07/2005; 146(6):2555-62. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: alpha-Melanocyte stimulating hormone (MSH) and adrenocorticotropin (ACTH)1-24, the minimal ACTH sequence required for full activity, differ only by the 10 C-terminal amino acids of ACTH1-24. Interestingly, these ten C-terminal residues have been highly conserved throughout vertebrate evolution. To understand the functional constraints of these 10 amino acids we analyzed the effects of mutating these residues on steroidogenic activity in vivo and in vitro. Alanine substitutions of some of the first four amino acid residues (the basic core residues KKRR, 15-18) greatly reduces ACTH activity in vitro and in vivo; replacement of mutant alanines at residues 15 and 17 with glutamine residues partially restores ACTH activity. Thus, for ACTH receptor binding and activation, the amino acid residues 15-18 are important for their side chains. Surprisingly, conversion of the five C-terminal residues (20-24) to alanines increases ACTH activity in vivo over that of native ACTH. With respect to receptor binding and activity, the last five amino acid residues are important only for the peptide length they contribute; however, with respect to serum stability, their side chains are significant.
    General and Comparative Endocrinology 04/2004; 136(1):12-6. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prolonged obesity frequently leads to insulin resistance and, eventually, to diabetes. This relationship reflects the integration of fat stores and carbohydrate metabolism and the coordination of central nervous system functions, e.g. appetite, and peripheral metabolism. Recent work suggests that the melanocortin system is involved in this integration; specifically, central administration of melanocyte-stimulating hormone (MSH) decreases, whereas lack of central MSH signaling increases, peripheral insulin resistance. Here we asked whether MSH acting in the periphery has a complementary role in insulin resistance. We tested this in a mouse model where the proopiomelanocortin (POMC) gene encoding all of the melanocortins has been genetically deleted. The homozygous POMC-null mouse lacks central as well as peripheral MSH signaling; in addition, it lacks adrenal glands and thus is devoid of corticosterone and epinephrine. Here we report that homozygous POMC mutants have normal serum levels of insulin, normal fasting levels of glucose, and normal clearance of glucose in glucose tolerance tests. Thus, insulin production and sensitivity and glucose uptake in peripheral tissues are functioning normally. However, we found a striking inability of the homozygous POMC mutants to recover from insulin-induced hypoglycemia. This defect was in the glucagon-mediated counterregulatory response. Both peripheral administration of an MSH analog and supplementation with corticosterone alleviated the hypoglycemia after insulin challenge, but did not make the obese POMC mutant mice diabetic. We conclude that, similar to the regulation of body weight homeostasis, the regulation of glucose homeostasis requires the integration of both central and peripheral melanocortin signaling systems.
    Endocrinology 01/2004; 144(12):5194-202. · 4.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Melanocortins are known to affect feeding and probably insulin activity through the central nervous system. It was also recently shown that peripheral alpha-melanocyte-stimulating hormone (alpha-MSH) administration can reduce weight gain in both genetic and diet-induced obese mice. As obesity is often associated with disregulation of glucose and insulin, we investigated the nature of glucose homeostasis in the obese pro-opiomelanocortin (POMC) knockout mouse. Here we report that though they are obese, mice deficient in POMC (and, thereby, deficient in alpha-MSH) are euglycemic throughout their lives. While these mice are euinsulinemic, they are hypersensitive to exogenous insulin. This defect can be reversed through administration of alpha-MSH. We demonstrate that the actions of alpha-MSH in the periphery, known from our work to include lipid metabolism effects, are also involved in glucose homeostasis. These findings substantiate a pivotal role of the POMC gene products in integrating metabolism.
    Annals of the New York Academy of Sciences 07/2003; 994:282-7. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin deficiency results in a complex obesity phenotype comprising both hyperphagia and lowered metabolism. The hyperphagia results, at least in part, from the absence of induction by leptin of melanocyte stimulating hormone (MSH) secretion in the hypothalamus; the MSH normally then binds to melanocortin-4 receptor expressing neurons and inhibits food intake. The basis for the reduced metabolic rate has been unknown. Here we show that leptin administered to leptin-deficient (ob/ob) mice results in a large increase in peripheral MSH levels; further, peripheral administration of an MSH analogue results in a reversal of their abnormally low metabolic rate, in an acceleration of weight loss during a fast, in partial restoration of thermoregulation in a cold challenge, and in inducing serum free fatty acid levels. These results support an important peripheral role for MSH in the integration of metabolism with appetite in response to perceived fat stores indicated by leptin levels.
    Proceedings of the National Academy of Sciences 04/2001; 98(7):4233-7. · 9.81 Impact Factor